2022 Annual Groundwater Monitoring Report Per EPA CCR Rule (CFR § 257.90-.98)

Asbury Power Plant CCR Impoundment Jasper County, MO

January 2023

Prepared For:

The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

CERTIFICATE OF COMPLIANCE

Annual Groundwater Monitoring Report for Existing CCR Surface Impoundments

EPA CCR Rule Section 40 CFR 257.90 (e)
Empire District Electric Company – Asbury Power Plant
Asbury, Missouri

The following presents the Annual Groundwater Monitoring Report for the Empire District Electric Company's CCR Impoundment at the Asbury Power Plant. This serves as certification that the facility is in compliance with 40 CFR 257.90 (e) of the EPA CCR.

40 CFR 257.90 (e) states:

(e) Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report.

CERTIFICATION 257.90 (e)

The undersigned Professional Engineer (P.E.) is familiar with the requirements of 40 CFR Part 257. The above summarizes the status of the Groundwater Monitoring for the Empire District Electric Company's CCR Impoundment at the Asbury Power Plant. I hereby certify that the facility is in compliance with 40 CFR 257.90 (e) and all information has been placed in the Operating Record. Notification of availability of this document should be provided to the State Director as required in section 257.107(h).

Name:	Anika Careaga, P.E.	Seal:

Signature: Lencho Concogo

Date: 123 625

Registration Number: 2005022085

State: Missouri

TABLE OF CONTENTS

CERTIFICATES OF COMPLIANCE

1.0 INTRODUCTION	1
2.0 BACKGROUND DATA	2
3.0 MAY 2022 SAMPLING EVENT	3
4.0 NOVEMBER 2022 SAMPLING EVENT	4
5.0 EXCUTIVE SUMMARY	6

LIST OF APPENDICES

Appendix A – May 2022 Sampling Event Appendix B – November 2022 Sampling Event

1.0 INTRODUCTION

The EPA Coal Combustion Residual Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundments. This Asbury Power Plant CCR impoundment groundwater monitoring sampling report is in accordance with the EPA CCR Rule.

In accordance with the EPA CCR Rule (§ 257.90-.98) the status of the Groundwater Monitoring was placed on-line October 17, 2017, as required by the EPA CCR rule. On November 2, 2017, the facility received approval from the Missouri Department of Natural Resources (MDNR) for their groundwater monitoring system. Background data of Appendix III and Appendix IV was collected from January 2016 to August 2017. After review of the first semi-annual groundwater sampling event analytical results completed in October 2017, the constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan in accordance with the EPA CCR Rule.

The Asbury Power Plant was retired on March 1, 2020, but residual fly ash, bottom ash, and other related wastes were placed in the impoundment area as part of the decommissioning activities. The facility is now known as the Asbury Renewable Operations Center. On April 1, 2021, a Notification of Intent to Close CCR Surface Impoundment was posted to the facility's website and the State Director (MDNR) was notified.

Construction of the final cap of the CCR impoundment began during 2022. Dewatering of the impoundment was occurring during the first part of the year. CCR grading, excavation and relocation activities began in June of 2022.

On May 10, 2022, and November 16, 2022, semi-annual detection monitoring sampling events was conducted per the EPA CCR Rule (§ 257.94). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III only. Based on the results of the 2022 statistical analysis, the site will continue with detection monitoring for the 2023 sampling events per the EPA CCR Rule (§ 257.94).

The EPA CCR Rule requires the annual groundwater report to be completed by January 31st of the following year. This report serves as the annual groundwater report for the 2021 sampling events that will be completed by January 31, 2023 and posted on-line within 30 days. This report was prepared in general accordance with the EPA CCR Rule for groundwater requirements. These regulations outline groundwater monitoring requirements and data evaluation methods. The Empire District will notify the MDNR "State Director" via e-mail when this document is posted on-line, as required in the CCR rule.

2.0 BACKGROUND DATA

The purpose of the groundwater monitoring plan is to monitor the groundwater quality surrounding the facility and to evaluate potential impacts and/or releases from facility operations. The groundwater monitoring system for the site consists of the following monitoring wells:

- MW-1 Sidegradient (water level only)
- MW-2 Upgradient
- MW-3 Upgradient
- MW-4 Downgradient
- MW-5 Downgradient
- MW-5A Downgradient
- MW-6 Downgradient
- MW-6A Downgradient
- MW-7 Sidegradient

Background groundwater data was collected from January 2016 to August 2017. After the background data plus the first semi-annual sampling events, a reduced sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will be completed during the months of April/May/June and October/November/December. Statistical analysis for EPA Appendix III began after the first semi-annual sampling event was collected on October 4, 2017.

Four more sets of background data were available to add to the background data set for the November 2019 sampling event and then four more sets for the November 2021 sampling event. The analysis of the additional data for the background data set was conducted. No trending was found in the additional four sets of data, so they were added to the baseline data set to increase the statistical power of the background data.

3.0 MAY 2022 SAMPLING EVENT

On May 10, 2022, a semi-annual detection monitoring sampling event was conducted per the EPA CCR Rule (§ 257.94). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. For quality assurance and quality control measures, a duplicate sample at MW-5 was taken.

	Table 1 – Constituents During May 2022 Sampling Event									
Constituent	Units	MCL	MW-2 (up)	MW-3 (up)	MW-4 (down)	MW-5 (down)	MW-5A (down)	MW-6 (down)	MW-6A (down)	MW-7 (side)
Appendix III										
Boron	mg/L	NA	0.16	<0.08J	0.17	0.32	1.7	0.39	0.46	0.29
Calcium	mg/L	NA	38	97	240	98	330	240	180	480
Chloride	mg/L	NA	95	55	74	6.4	130	15	20	35
Fluoride	mg/L	4.0	0.34	0.16	0.12	0.25	0.25	0.19	0.28	<0.25J
рН	SU	NA	6.42	5.82	6.48	7.32	6.79	7.3	7.2	6.47
Sulfate	mg/L	NA	46	420	830	130	1500	850	800	1700
Total Dissolved Solids	mg/L	NA	390	880	1800	570	2900	1800	1500	2800

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event. There was no initial interwell prediction limit exceedances for the listed monitoring well during May 2022 sampling event. During the May 2022 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5, MW-6 and MW-6A) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the November 2022 sampling event. **Appendix A** contains the complete report for the May 2022 sampling event.

The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, and May 2022 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

4.0 NOVEMBER 2022 SAMPLING EVENT

On November 16, 2022, a semi-annual detection monitoring sampling event was conducted per the EPA CCR Rule (§ 257.94). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. For quality assurance and quality control measures, a duplicate sample at MW-5 was taken.

	Table 2 – Constituents During November 2022 Sampling Event									
Constituent	Units	MCL	MW-2 (up)	MW-3 (up)	MW-4 (down)	MW-5 (down)	MW-5A (down)	MW-6 (down)	MW-6A (down)	MW-7 (side)
Appendix III										
Boron	mg/L	NA	0.13	<0.08J	<0.08	0.29	2	0.43	0.45	0.29
Calcium	mg/L	NA	37	99	280	79	420	270	230	500
Chloride	mg/L	NA	110	62	4.4	6	150	15	37	49
Fluoride	mg/L	4.0	0.44	0.16	<0.25	0.25	<0.25J	<0.25J	0.41	<0.25J
pН	SU	NA	6.7	6.06	7.03	7.6	6.83	7.01	6.69	6.45
Sulfate	mg/L	NA	49	480	500	140	1600	970	910	1700
Total Dissolved Solids	mg/L	NA	380	920	1400	550	3000	1800	1800	2800

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event. There was no initial interwell prediction limit exceedances for the listed monitoring well during November 2022 sampling event. During the November 2022 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the May 2023 sampling event. It was noted during sampling that water levels were significantly lower than normally seen due to drought conditions. The drought should be considered excessive. Governor Mike Parson declared at state of emergency in Missouri for drought conditions on July 21, 2022. **Table 3** shows the drop in elevation between the May 2022 and November 2022 sampling events. **Appendix B** contains the full report for the November 2022 sampling event.

	Table 3 - Groundwater Sampling Comparison						
WELL ID	NOVEMBER 2022 STATIC WATER LEVEL (ft-BTOC)		STATIC W	Y 2022 VATER LEVEL BTOC)	DIFFERENCE IN INTIAL LEVELS (ft-BTOC)		
N 41 4 *	Initial	Final	Initial	Final	4.24		
MW-1*	9.72	NA	5.41	NA	4.31		
MW-2	3.76	6.43	3.07	4.87	0.69		
MW-3	3.57	3.64	0.5	0.7	3.07		
MW-4	8.39	13.98	5.83	12.93	2.56		
MW-5	1.31	11.17	1.82	13.39	-0.51		
MW-5A	11.22	20.88	9.50	19.43	1.72		
MW-6	10.66	19.86	8.86	18.07	1.8		
MW-6A	9.40	18.30	7.93	18.20	1.47		
MW-7	6.42	6.50	3.15	3.32	3.27		

The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, May 2022, and November 2022 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct.

Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

5.0 EXCUTIVE SUMMARY

This report is a summary of the 2022 sampling events and the findings of the statistical analysis of the results of the groundwater detection monitoring program at the Asbury Power Plant CCR Impoundment. Specific information about each sampling event can be obtained from the individual reports which are included as appendices and have been placed in the Asbury Operating Record. Statistical analysis will continue utilizing interwell prediction limits per EPA's request. The site continues with the detection monitoring program on a semi-annual basis per the EPA CCR Rule (§ 257.94).

APPENDIX A

May 2022 Sampling Event

2022 Groundwater Monitoring, Sampling & Statistics **Per EPA CCR Rule (CFR § 257.90-.98)**

May 2022 Sampling Event

Asbury Power Plant CCR Impoundment Jasper County, MO

July 2022

Prepared For:

The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE LOCATION	2
2.1 History	2
2.2 Site Geology	2
2.3 Groundwater Monitoring Network Design	3
2.4 Groundwater Monitoring Network	3
2.5 Seasonal Variation	4
2.6 Groundwater Flow Direction	4
3.0 BASELINE GROUNDWATER DATA	5
3.1 Baseline Data Collection	5
3.2 Background Data Analysis	5
4.0 GROUNDWATER SAMPLING EVENT	6
5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA	7
5.1 Precision	7
5.2 Accuracy	7
5.3 Representativeness	7
5.4 Comparability	7
5.5 Completeness	8
6.0 STATISTICAL ANALYSIS	9
6.1 Sampling Results	9
6.2 Statistical Analysis	9
6.3 Results Interpretation	11
6.4 Proposed Actions	15
LIST OF FIGURES	
Figure 1 – Site Location	
Figure 2 – Monitoring Well Location	
Figure 3 – Potentiometric Map	
LIST OF APPENDICES	
Appendix 1 – EPA/MDNR Correspondence	
Appendix 2 – Baseline Sampling Information	
Appendix 3 – Monitoring Well Field Inspection Sheets and Field Notes	
Appendix 4 – Analytical Results from Lab	
Appendix 5 – Statistical Analysis	

1.0 INTRODUCTION

The EPA Coal Combustion Residual Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundments. This Asbury Power Plant CCR impoundment groundwater monitoring sampling report is in accordance with the EPA CCR Rule. In accordance with the EPA CCR Rule (§ 257.90-.98) the status of the Groundwater Monitoring was placed on-line October 17, 2017, as required by the EPA CCR rule. On November 2, 2017, the facility received approval from Missouri Department of Natural Resources (MDNR) of their groundwater system (included in **Appendix 1**). Empire notified the MDNR "State Director" via e-mail when this document was posted on-line, as required in the CCR rule. The EPA CCR Rule requires the annual groundwater report to be prepared by January 31st of the following year. The first report was due January 31, 2018. This report was prepared in general accordance with the EPA CCR Rule for groundwater requirements. These regulations outline groundwater monitoring requirements and data evaluation methods. The annual groundwater report for the 2020 sampling events will be posted on-line within 30 days of placement in the operating record.

The purpose of the groundwater monitoring plan is to monitor the ground water quality surrounding the facility and to evaluate potential impacts and/or releases from facility operations. Background groundwater data was collected from January 2016 to August 2017. After the background data plus the first semi-annual sampling events, a reduced sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will generally be completed during the months of May and November. Statistical analysis for EPA Appendix III began after the first semi-annual sampling event was collected on October 4, 2017, to determine if a statistically significant increase (SSI) has occurred. If an SSI is verified, additional evaluation is required to determine if the SSI was caused by the CCR impoundment.

On May 10, 2022, a semi-annual sampling event was conducted per the EPA CCR Rule (§ 257.90-.98). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. After review of the first semi-annual groundwater sampling event analytical results completed in October 2017, the constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan in accordance with the EPA CCR Rule. For quality assurance and quality control measures, a duplicate sample at MW-5 was taken. These samples were preserved and submitted directly to the laboratory.

The Asbury Power Plant was retired on March 1, 2020, but residual fly ash, bottom ash, and other related wastes were placed in the impoundment area as part of the decommissioning activities. The facility is now known as the Asbury Renewable Operations Center. On April 1, 2021, a Notification of Intent to Close CCR Surface Impoundment was posted to the facility's website and the State Director (MDNR) was notified.

Construction of the final cap of the CCR impoundment began during 2022. Dewatering of the impoundment was occurring during the first part of the year.

This report is a summary of the May 2022 sampling event and the findings of the statistical analysis of the results of the groundwater monitoring program at the Asbury Power Plant CCR Impoundment. Specific information about each sampling event can be obtained from the individual report which is part of the Asbury Operating Record.

2.0 SITE LOCATION

The site occupies the north half of Section 17, Township 30 North, and Range 33 West on the Asbury 7.5-Minute Quadrangle Map as seen in **Figure 1**. The site is located approximately 5.5 miles north-northeast of Asbury, Missouri, about 14 miles north-northwest of Joplin, Missouri. A map showing the locations of the monitoring wells is in **Figure 2**.

2.1 History

In March 1996, five (5) groundwater monitoring wells, MW-1 through MW-5, were installed around the perimeter of the Asbury Power Plant CCR impoundment. Monitoring wells MW-1, MW-2 and MW-3 were installed to a total depth of between 27.0 to 28.5 feet below ground surface (bgs). Monitoring wells MW-4 and MW-5 were installed to a total depth of 48 feet bgs. Each of the five monitoring wells was equipped with 10.0-foot well screens. The five wells were then developed, purged, and sampled in 1996.

In 2003, two (2) additional groundwater monitoring wells were installed and identified as MW-6 and MW-7. Both wells had 2-inch diameter PVC well casings installed to an approximate total depth of 44 feet below ground surface. Both wells were installed with an above ground steel protective cover. No other construction details such as well screen lengths were available for these two (2) wells. In December 2015, two (2) additional groundwater monitoring wells were installed and identified as MW-5A and MW-6A.

All wells are registered with MDNR – Missouri Geological Survey Program.

The Asbury Power Plant was retired on March 1, 2020, but residual fly ash, bottom ash, and other related wastes were placed in the impoundment area as part of the decommissioning activities. The facility is now known as the Asbury Renewable Operations Center. On April 1, 2021, a Notification of Intent to Close CCR Surface Impoundment was posted to the facility's website and the State Director (MDNR) was notified.

Construction of the final cap of the CCR impoundment began during 2022. Dewatering of the impoundment was occurring during the first part of the year.

2.2 Site Geology

Drilling and subsurface investigation activities at the Site and as part of the MDNR approved CCR landfill Detailed Site Investigation (DSI) for the adjacent landfill area identified three (3) primary geologic units at the Site. These geologic units include the surficial soil layer, Warner Sandstone (uppermost aquifer), and Riverton Shale (confining unit). The information presented herein includes the primary elements of a site characterization work plan consistent with the MDNR guidance.

<u>Surficial Soil</u>. Soils at the site consist of a surficial unit of cohesive soils (e.g., CL, SC, ML, and CH) underlain by Pennsylvanian-age bedrock. Soil thickness at the Site ranges from approximately 15-25 feet.

<u>Warner Sandstone</u>. The Warner Sandstone (Sandstone) is the uppermost bedrock unit in the south portion of the Site. In the north area of the Site, the Sandstone is overlain by the Riverton Shale (Shale). Based on the DSI information, the Sandstone and Shale can occur as alternating layers. The Sandstone and Shale are gradational in places and transition from shaley sandstone to

sandy shale. According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Warner Sandstone formation is described as follows: "Generally, the lower part is interbedded, very fine-grained sandstone and claystone. The upper part is largely medium bedded to massive channel fill sandstone. In places, the Warner consists primarily of shale and claystone, with only minor amounts of sandstone" and "ranges in thickness from 0 to 15m (49.2 ft.)."

The Sandstone is more than 25-30 feet thick in places and is generally medium hard and thin to medium bedded with occasional shale partings. The degree of induration of the Sandstone varies and generally increases with depth. Slug tests performed at selected DSI piezometers screened in the Sandstone exhibited hydraulic conductivities ranging from approximately 1.3x10-4 cm/sec to 5.9x10-6 cm/sec. The slug test results are consistent with values for sandstone and shaley sandstone. The groundwater gradient is towards the east and Blackberry Creek.

Riverton Shale. Layers of the Riverton Shale (Shale) exhibited thicknesses ranging from approximately one foot to more than 10 feet. The Shale is generally dark gray to light gray. The Shale is mainly thin bedded with hardness ranging from soft to hard. Six packer tests were performed during the DSI to assess the hydraulic conductivity of the Shale. The packer test results ranged from approximately 3.2×10^{-6} cm/sec to 4.9×10^{-8} cm/sec. The packer test data indicates that the Shale is an effective confining unit.

According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Riverton Shale formation is described as "dark gray to black, fine-grained, relatively brittle shale and contains as many as three coal beds, each of which is underlain by underclay" and "varies in thickness from a featheredge to more than 90 feet".

<u>Unnamed Coal</u>. The Shale includes coal seams in places that range in thickness from a few inches to approximately 1.5 feet. The coal is generally black to dark gray.

2.3 Groundwater Monitoring Network Design

The groundwater monitoring system for the CCR impoundment consists of nine (9) groundwater monitoring wells. Two (2) wells are considered upgradient. Two (2) wells are considered sidegradient; one is only monitored for groundwater elevation. The remaining five (5) wells are considered downgradient.

The groundwater monitoring wells (MWs) at the Asbury Power Plant is equipped with individual dedicated poly tubing to be connected to a peristaltic pump/controller at the surface. Low-flow, micro-purge and sampling techniques and technology are utilized to collect groundwater samples from the subject wells. The groundwater sampling procedures are discussed in further detail below.

2.4 Groundwater Monitoring Network

The locations of the monitoring wells are shown in **Figure 2**. The groundwater monitoring system for the site consists of the following monitoring wells:

- MW-1 Sidegradient (water level only)
- MW-2 Upgradient
- MW-3 Upgradient
- MW-4 Downgradient
- MW-5 Downgradient

MW-5A Downgradient

• MW-6 Downgradient

MW-6A Downgradient

MW-7 Sidegradient

2.5 Seasonal Variation

Historical groundwater elevation data has been limited. However, adequate lengths of well screen have been utilized during the construction of the wells to accommodate typical seasonal groundwater elevation variations seen in southwest Missouri.

2.6 Groundwater Flow Direction

Historically, the seasonally high potentiometric surface indicated the groundwater flow direction to the east. **Figure 3** is a potentiometric map for this sampling event.

Originally MW-7 was thought to be a downgradient well but review of the potentiometric mapping from the eight background sampling events revealed that the well is a side gradient well. Therefore, the designation for MW-7 has been changed from a downgradient to a sidegradient well for compliance monitoring.

3.0 BASELINE GROUNDWATER DATA

3.1 Baseline Data Collection

Per EPA CCR Rule § 257.94(b), the site initiated the detection monitoring program in January 2016 to include obtaining a minimum of eight (8) independent samples for each background and downgradient well. The eight (8) independent groundwater samples were obtained and analyzed as required by the CCR Rule per the baseline groundwater monitoring plan. Background groundwater data was collected from January 2016 to August 2017.

Groundwater Monitoring Reports were completed for each sampling event and have been placed in the Operating Record. Summary tables of the results from each event are included in **Appendix 2**. A listing of each event is below:

- January 2016
- March 2016
- May 2016
- August 2016
- October 2016
- March 2017
- June 2017
- August 2017

Initial baseline monitoring was required at all monitoring wells. The sampling frequency was quarterly or more frequently for the first two (2) years. After the background data plus the first semi-annual sampling events, a reduced lower sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will be completed during the months of April/May/June and October/November/December.

The initial two (2) years of baseline and the first semi-annual detection monitoring included parameters listed in Appendix III and Appendix IV of the EPA CCR Rule. The constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan after review of the first semi-annual groundwater sampling event analytical results in January 2018, according to the EPA CCR Rule. **Appendix 2** contains the list of constituents.

3.2 Background Data Analysis

Sanitas™ for Ground Water Version 9.2.13 was used to run the statistical analyses with settings used as recommended by the Sanitas™ training course and user manual. The background data consisted of eight sampling events between January 2016 and August 2017 for both the Appendix III and IV constituents. Eight background events are needed for statistical analysis. An analysis of the Appendix III background data was conducted and is included in **Appendix 5**. Trending was found in Boron (MW-3) and Total Dissolved Solids (MW-3). MW-3 is an up-gradient well. Trending was not removed at that time; otherwise, the site would be below the minimum of eight background samples needed to run statistics.

Four more sets of background data were available to add to the background data set for the November 2019 sampling event and then four more sets for the November 2021 sampling event. The analysis of the additional data for the background data sets was conducted and is included in **Appendix 5**. No trending was found in any of the additional sets of data, so they were added to the baseline data set to increase the statistical power of the background data.

4.0 GROUNDWATER SAMPLING EVENT

On May 10, 2022, eight (8) groundwater monitoring wells were sampled by Midwest Environmental Consultants (MEC) for the EPA CCR Rule Appendix III parameters. For quality assurance and quality control measures, a duplicate sample was taken at MW-5. The sampling protocol and methodology was to be conducted in accordance to the facility's Sampling and Analysis Plan. **Table 1** provides a list of the analytical methods employed by the subcontracted laboratory.

Table 1 – Analytical Methods				
Method	Description			
9056A	Anions, Ion Chromatography			
6020A	Metals (ICP/MS)			
SM 2540C	Solids, Total Dissolved (TDS)			
Field Sampling	Field Sampling			

Appendix 3 includes Monitoring Well Field Inspection sheets and field notes. The physical integrity of the wells was good. During sample collection each of the wells was monitored for pump discharge and formation recharge. Initially, a static water level for each well was recorded (Table 2). To ensure sufficient recharge while sampling, static water levels were collected during pumping. Prior to sample collection, field parameters for each well were measured with a flow-through meter. When the field parameters stabilized, samples for analytical testing were collected and placed on ice for hand delivery to the laboratory. At the conclusion of sample collection from each well, a final static water level measurement was obtained. The samples were collected in the appropriately pre-preserved sample containers and placed on ice for delivery.

Tab	Table 2 - Groundwater Sampling Field Parameters Summary During May 2022 Sampling Event					
WELL ID	STATIC WA	гос)	PURGE RATE (mL/min)	STABILIZED pH		
D 4) A / 1 *	Initial	Final	NIA .			
MW-1*	5.41	NA	NA	NA		
MW-2	3.07	4.87	200	6.42		
MW-3	0.5	0.7	200	5.82		
MW-4	5.83	12.93	200	6.48		
MW-5	1.82	13.39	200	7.32		
MW-5A	9.50	19.43	200	6.79		
MW-6	8.86	18.07	200	7.30		
MW-6A	7.93	18.20	200	7.20		
MW-7	3.15	3.32	200	6.47		

^{*} Water Level Only NA – Not Applicable NT – Not Tested

Appendix 4 includes the initial analytical results for the sampling event. Included with this analytical report are sample information; chain of custody; wet chemistry data; and volatile data.

5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA

Midwest Environmental Consultants receives Data Packages from the analytical laboratory (Test America). The internal quality control/quality assurance case narratives and reported data are then reviewed. Generally, the data validation procedures established by the U.S. Environmental Protection Agency *Contract Laboratory Program Functional Guidelines for Organic Data Review* and *Functional Guidelines for Inorganic Data Review* is followed. These guidelines are used to assign data qualifiers to the data. A formal data validation report for the site is not prepared; however, any significant issues are noted in the groundwater monitoring report.

MEC evaluates the data set for precision, accuracy, representativeness, comparability, and completeness (PARCC).

5.1 Precision

<u>Laboratory Precision</u>. Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability.

<u>Field Precision.</u> Analyses of duplicate samples are used to define the total variability (replicability) of the sampling/analytical system. Field replicates are collected at a rate of one per sampling event.

5.2 Accuracy

Accuracy is determined by calculating the percent recoveries for analyses of surrogate compounds, LCSs, continuing calibration check standards, and matrix spike samples. Acceptable percent recoveries are established for SW-846 and EPA methods. Field and laboratory blank analysis are also used to address measurement bias.

<u>Field Blanks.</u> Field blanks consisted of a trip blank and a field blank. One trip blank per cooler accompanies samples for volatile organic analyses.

<u>Laboratory Blanks.</u> Method blanks, artificial, matrix-less samples, are analyzed to monitor the laboratory analysis system for interferences and contamination from glassware, reagents, etc. Method blanks are taken through the entire sample preparation process. They are included with each batch of extractions or digestion prepared, or with each 20 samples, whichever is more frequent.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflects site condition. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field replicate samples, and reviewing the results of field blanks. Field notes are reviewed as part of our data validation process.

5.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

5.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form. Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria were met.

6.0 STATISTICAL ANALYSIS

6.1 Sampling Results

The constituents with results above the laboratory reporting limits are included in **Table 3**. The Test America laboratory analytical results are included in **Appendix 4**.

	Table 3 – Constituents During May 2022 Sampling Event									
Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
Constituent	Ullits	IVICL	(up)	(up)	(down)	(down)	(down)	(down)	(down)	(side)
Appendix III										
Boron	mg/L	NA	0.16	<0.08J	0.17	0.32	1.7	0.39	0.46	0.29
Calcium	mg/L	NA	38	97	240	98	330	240	180	480
Chloride	mg/L	NA	95	55	74	6.4	130	15	20	35
Fluoride	mg/L	4.0	0.34	0.16	0.12	0.25	0.25	0.19	0.28	<0.25J
рН	SU	NA	6.42	5.82	6.48	7.32	6.79	7.3	7.2	6.47
Sulfate	mg/L	NA	46	420	830	130	1500	850	800	1700
Total Dissolved Solids	mg/L	NA	390	880	1800	570	2900	1800	1500	2800

NA = Not Applicable

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event.

6.2 Statistical Analysis

The November 2019 sampling event report indicated confirmed intrawell prediction limits exceedances. Intrawell prediction limits were utilized per the facility's 2018 Groundwater Statistical Analysis Plan. The Annual Report recommending the site move into assessment monitoring was stamped on January 23, 2020 and submitted to the facility. However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. **Appendix 1** contains the MDNR/EPA correspondence.

Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from background wells, which include upgradient and sidegradient wells per EPA Unified Guidance definitions, and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. To appropriately characterize the groundwater beneath the site, the statistical methods utilized at the facility consider the following facts as they relate to site:

- Potential differences in geochemical characteristics of the groundwater caused by the differing lithologies in contact with the screened interval from well to well.
- Potential impacts of surface infiltration into the groundwater environment.

Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. Municipal and demolition waste landfills in Missouri typically utilize intrawell prediction limits per MDNR. However, it was noted that the power curve for these analyses was not considered strong yet. The data set consisted of only 13 sampling events from

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

January 2016 to November 2019. EPA Unified Guidance recommends 20 or more sampling events for background data for intrawell prediction limits. A small data set triggers an SSI when there is even a slight increase in concentration. Sanitas also note to each exceedance "Insufficient data to test for seasonality: data were not deseasonalized." Minor increases in concentration noted in the May and November 2019 sampling events did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

The EPA Unified Guidance Chapter 5.2.3 states "In groundwater data collection and testing, background conditions may not be static over time. Caution should be observed in removing observations which may signal a change in natural groundwater quality. Even when conditions have not changed, an apparently extreme measurement may represent nothing more than a portion of the background distribution that has yet to be observed. This is particularly true if the background data set contains fewer than 20 samples." Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

MDNR made several requests per EPA in the correspondence located in **Appendix 1** which included the EPA review of the groundwater reports as seen in **Table 4**.

Table 4 – EPA Review of Groundwater Reports					
Facility	Asbury Power Plant				
Location	Asbury, MO				
Owner	Empire District Electric Company				
Units	Upper Pond-unlined, South Pond-unlined, Lower Pond-unlined				
Geology	Surficial unit of clay, clayey sand, and silt approximately 15 to 25 feet thick underlain by Warner Sandstone approximately 25-30 feet thick in the southern portion of the site and the Riverton Shale in the northern area of the site				
Problematic Use of Intra Well Comparisons	Analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells. Consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra well analysis				
Problematic Alternate Source Determination					
Conclusions	While there are no boring logs in the documents to confirm that the wells are screened in the same geologic unit, consistency in the field parameters and the description of the geology suggest that the wells are screened in the sandstone. The analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells, consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra wells analyses				

Sanitas[™] for Ground Water Version 9.6.25 was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. Interwell prediction intervals were run per EPA's request. The Sanitas[™] output is included in **Appendix 5**.

Statistical analysis was performed on the Appendix III constituents from the sampling event compared to the updated background dataset. Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from upgradient background wells and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. However, EPA has requested the site utilize interwell prediction limits.

Statistical analysis results are presented below for those constituents determined to have exceeded a prediction limit. However, EPA's "Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities," March 2009, EPA 530/R-09-007 is referenced multiple times in the preamble of the EPA CCR regulations for groundwater sampling and analysis requirements. According to the EPA Unified Guidance, a prediction limit exceedance is not considered a statistically significant increase (SSI) until it is confirmed through retesting. SSIs generated by non-detectable results or with less than eight background events are considered statistically invalid.

Table 5 lists the parameters with exceedances of prediction limits during the sampling event, the associated monitoring wells, if the exceedance is initial versus confirmed, the predicted limit, the measured concentration, and the MCL set forth in the National Drinking Water Regulations. The MCL is the highest level of a contaminant that is allowed in drinking water.

Table 5 – Interwell Prediction Limit Exceedances Observed During May 2022 Sampling Event							
Constituent Monitoring Unitial vs. Predicted Measured Drinking Unitial vs. Predicted Measured Drinking Unitial Concentration Water MCI							
Boron (mg/L)	MW-5A	Confirmed	0.9	1.7	NA		
pH* (SU)	MW-5	Confirmed	7.133	7.32	NA		
pH* (SU)	MW-6	Confirmed	7.133	7.30	NA		
pH* (SU)	MW-6A	Confirmed	7.133	7.20	NA		

NA = Not Applicable

6.3 Results Interpretation

There was no initial interwell prediction limit exceedances for the listed monitoring well during May 2022 sampling event. During the May 2022 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5, MW-6 and MW-6A) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the November 2022 sampling event.

The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, and May 2022 sampling events indicate a confirmed exceedance for Boron (MW-

^{*}Field Sampled (less precise but within the required hold time)

5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct.

Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

Below is a discussion of the previous results for comparison.

November 2021

There was no initial interwell prediction limit exceedances for the listed monitoring well during November 2021 sampling event. During the November 2021 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5, MW-6 and MW-6A) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the May 2022 sampling event. The results of the interwell prediction limit statistical analysis of the November 2020, May 2021 and November 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

May 2021

There was no initial interwell prediction limit exceedances for the listed monitoring well during May 2021 sampling event. During the November 2020 sampling event, Initial interwell prediction exceedances in pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) were noted. However, the initial prediction limit exceedance of total dissolved solids (MW-5A) was not

confirmed during the May 2020 sampling event. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility plans to resample as part of the November 2021 sampling event. The results of the interwell prediction limit statistical analysis of the November 2020 and May 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semiannual basis.

November 2020

The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed exceedance for Boron (MW-5A). Boron does not have an MCL. The facility will conduct an alternative source demonstration in the next 90 days per the EPA CCR Rule (§ 257.94). The results for pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) indicated initial interwell prediction limit exceedances for the listed monitoring well during November 2020 sampling event. There are no current primary (health based) MCLs for pH or total dissolved solids. The facility plans to resample as part of the May 2021 sampling event. During the May 2020 sampling event, Initial interwell prediction exceedances in boron (MW-5A and MW-6A) and fluoride (MW-5A) were noted. However, the initial prediction limit exceedances of boron (MW-6A) and fluoride (MW-5A) were not confirmed during the November 2020 sampling event.

May 2020

The results of the EPA requested interwell prediction limit statistical analysis of the May 2020 sampling event indicate that the site is in compliance. The results for boron (MW-5A and MW-6A) and fluoride (MW-5A) indicated an initial interwell prediction limit exceedance for the listed monitoring well during May 2020 sampling event. There is a current primary (health based) MCL for fluoride of 4.0 mg/L but the result is below the limit. Boron does not have a MCL but does have an EPA proposed groundwater protection standard of 4.0 mg/L but all results were below that limit. Trending was found to be significant for boron (MW-5A) but not significant in boron (MW-6A) and fluoride (MW-5A). Boron is also trending upward in MW-2 which is an up-gradient well. The facility plans to resample as part of the November 2020 sampling event. During the November 2019 sampling event, Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted. However, these initial prediction limit exceedances were not confirmed during the May 2020 sampling event.

November 2019

The result for Chloride (MW-5A), pH (MW-4) and Sulfate (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2019 sampling event. There is no current primary (health based) MCL for chloride, pH, or sulfate. During May 2019, the result for Boron (MW-5A) indicated an initial intrawell prediction limit exceedance and Total Dissolved Solids (MW-5A) indicated a confirmed intrawell prediction limit exceedance. There is no current primary (health based) MCL for boron and total dissolved solids. These prediction limit exceedances were confirmed during the November 2019 sampling event. A resample of MW-5A was conducted on December 11, 2019. The results of the resampling confirmed the exceedances and the site planned to move into assessment monitoring. However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. Appendix 1 contains the MDNR/EPA correspondence. The results of the EPA requested interwell prediction limit statistical analysis of the November 2019 sampling event indicate that the site is in compliance. Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted but have not been confirmed. There is no current primary (health based) Maximum Contamination Level (MCL) for pH. Trending was not found to be significant for pH in any well during the analysis of the background data set.

May 2019

The result for Boron (MW-5A) and pH (MW-3(u), MW-5A, MW-6 and MW-6A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the May 2019 sampling event. There is no current primary (health based) MCL boron or pH. The facility plans to resample as part of the November 2019 sampling event. During November 2018, the result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance. There is no current primary (health based) MCL for total dissolved solids. This initial prediction limit exceedances were confirmed during the May 2019 sampling event. However, it should be noted that the power curve for these analyses is not considered strong. A small data set triggers an SSI when there is even a slight increase in concentration. The EPA Unified Guidance Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated. It was also noted that higher levels of total dissolved solids were seen in the side-gradient well MW-7 demonstrating that there was likely not a release from the facility. Therefore, the site will continue with detection monitoring on a semi-annual basis at this time.

November 2018

The result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2018 sampling event. There is no current primary (health based) MCL for total dissolved solids. The facility plans to resample MW-5A for Total Dissolved Solids as part of the May 2019 sampling event. During May 2018, no intrawell prediction limits were exceeded. Therefore, there were no initial prediction limit exceedances to confirm during the November 2018 sampling event.

May 2018

No intrawell prediction limits were exceeded during the May 2018 sampling event. The October 2017 results for Total Dissolved Solids (MW-7) indicated an exceedance of the predicted limit for the listed monitoring wells. However, this initial prediction limit exceedance was not confirmed during the May 2018 sampling event.

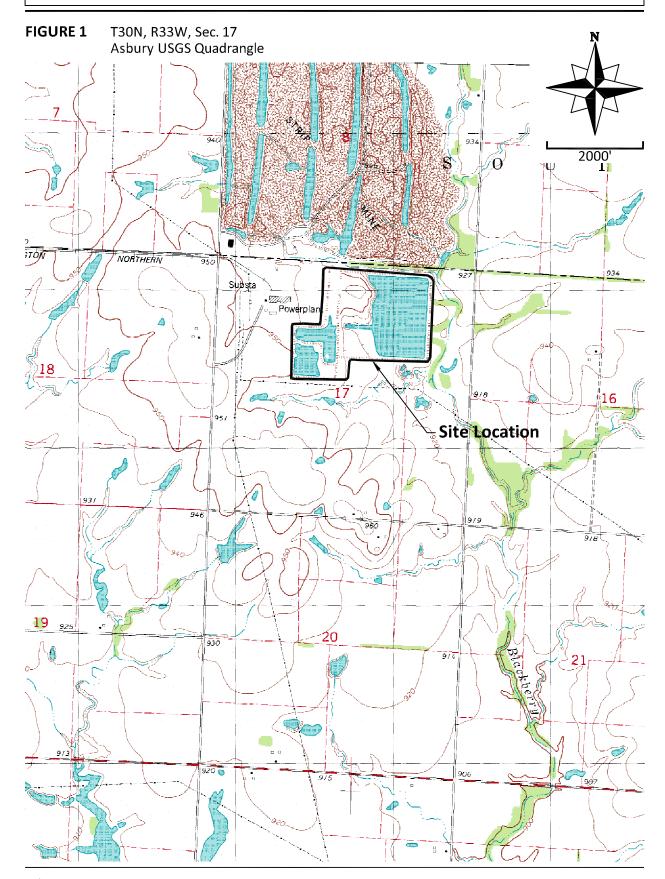
October 2017

The result for Total Dissolved Solids (MW-7) indicated an initial intrawell prediction limit exceedance for the listed monitoring wells during the October 2017 sampling event. However, the result was below the tolerance limit. There is no current primary (health based) MCL for total dissolved solids. Review of the Total Dissolved Solids in the duplicate sample taken from the same well (MW-7) shows a result of 3,000 mg/L, which would not be an exceedance of the intrawell prediction limit of 3,069 mg/L. Due to the variances between the sample and the duplicate, the site will re-evaluate MW-7 for Total Dissolved Solids during the next sampling event. MW-7 is considered a sidegradient well, therefore no further action is needed for exceedances in sidegradient or upgradient wells.

6.4 Proposed Actions

Statistical analysis will continue to be completed with interwell prediction limits per EPA's request. The results of the EPA requested interwell prediction limit statistical analysis of the November 2020, May 2021 and November 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct.


Based upon these findings the site does not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

FIGURES

Asbury Generating Station CCR ImpoundmentGroundwater Sampling Event - May 2022 Site Location Map

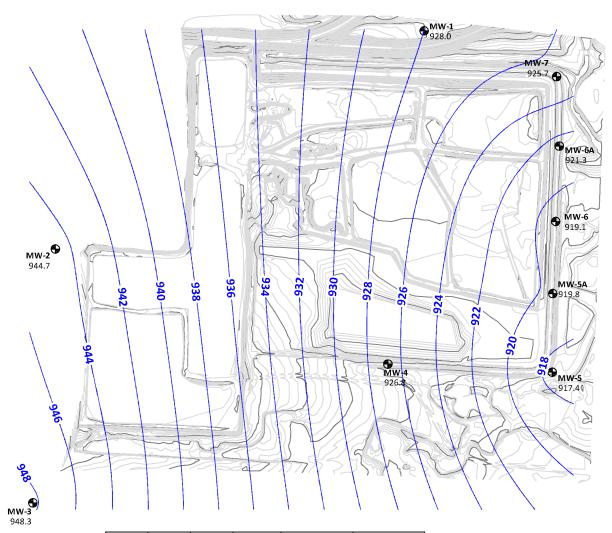
Asbury Generating Station CCR ImpoundmentGroundwater Sampling Event - May 2022
Groundwater Monitoring System

FIGURE 2

Well ID	Northing	Easting
MW-1	435791.18 *	2765165.35 *
MW-2	434428.46	2762861.37
MW-3	432842.77	2762720.80
MW-4	433709.99	2764938.99
MW-5	433659.27	2765966.23
MW-5A	434150.04	2765969.78
MW-6	434600.46	2765987.98
MW-6A	435071.44	2766010.46
MW-7	435505.42	2765993.13

^{*} Coordinate location is approximate

Legend


Monitoring Well

Asbury Generating Station CCR Impoundment Groundwater Sampling Event - May 2022 Groundwater Piezometric Surface Map

FIGURE 3

Well ID	Northing	Easting	Top Of Casing	Static Water Level (BTOC)	Static Water Level
MW-1	435791.18	2765165.35	933.4	5.4	928.0
MW-2	434428.46	2762861.37	947.8	3.1	944.7
MW-3	432842.77	2762720.80	948.8	0.5	948.3
MW-4	433709.99	2764938.99	932.6	5.8	926.8
MW-5	433659.27	2765966.23	919.2	1.8	917.4
MW-5A	434150.04	2765969.78	929.3	9.5	919.8
MW-6	434600.46	2765987.98	928.0	8.9	919.1
MW-6A	435071.44	2766010.46	929.3	7.9	921.3
MW-7	435505.42	2765993.13	928.8	3.2	925.7

Legend

Monitoring Well

APPENDIX 1

EPA/MDNR Correspondence

Missouri Department of

dnr.mo.gov

NATURAL RESOURCES

Eric R. Greitens, Governor

Carol S. Comer, Director

NOV 0.2 2017

Mr. Kavan Stull, Senior Environmental Coordinator Empire District 602 South Joplin Avenue Joplin, MO 64802

RE: Site Characterization Workplan

Dear Mr. Stull:

The Missouri Department of Natural Resources has reviewed the document "Site Characterization Workplan" dated May 16, 2017. The site has undergone extensive characterization regarding construction of a coal combustion residual (CCR) landfill near the CCR impoundments. The department's Water Protection Program has determined, through consulting with the Missouri Geological Survey, this characterization is sufficient and may be used in whole to complete the required monitoring of the sub-surface conditions at the site. Additional submittal of site characterization is not necessary, as the previous submittal meets the requirement for special condition 19(b) of the Missouri State Operating Permit MO-0095362. The facility may proceed with the next step laid out in the permit; special condition 19(c). Enclosed is the Missouri Geological Survey concurrence.

If you were adversely affected by this decision, you may be entitled to an appeal before the Administrative Hearing Commission (AHC) pursuant to 10 CSR 20 1.020 and Section 621.250, RSMo. To appeal, you must file a petition with the AHC within 30 days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed; if it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the AHC. Contact information for the AHC is by mail at Administrative Hearing Commission, United States Post Office Building, Third Floor, 131 West High Street, P.O. Box 1557, Jefferson City, MO 65102, by phone at 573-751-2422, by fax at 573-751-5018, and by website at www.oa.mo.gov/ahc.

Mr. Kavan Stull Page 2

If you have any questions, please do not hesitate to contact Ms. Pam Hackler by mail at Department of Natural Resources, Water Protection Program, P.O. Box 176, Jefferson City, MO 65102-0176, by phone at 573-526-3386; or by email at pam.hackler@dnr.mo.gov. Thank you.

Sincerely,

WATER PROTECTION PROGRAM

Michael J. Abbott, Chief Operating Permits Section

MJA/php

Enclosure

c: Mr. Randall Willoughby, Southwest Regional Office

MEMORANDUM

DATE:

October 18, 2017

SWR18011 Jasper County

TO:

Pam Hackler- WPP- Industrial Wastewater Unit

FROM:

Fletcher N. Bone, Geologist, Environmental Geology Section, Geological Survey Program,

MGS

SUBJECT:

Site characterization for existing CCR

impoundments

Asbury Power Plant Site Characterization Work

Plan- CCR

37 21 22.66 Latitude, -94 35 4.79 Longitude,

Jasper County, Missouri

October 18, 2017

The Missouri Geological Survey (MGS) has reviewed the documents titled, 'NPDES Permit MO-0095362 Asbury Power Plant, Jasper County, Missouri, Site Characterization Work Plan', prepared by Empire District Electric Company, dated September 8, 2017 and 'Site Characterization Work Plan, Coal Combustion Residuals Impoundments, Empire Electric Facility - Permit MO-0095362, Jasper County, Missouri, Geotechnology Project No. J021738.03', prepared by Geotechnology Inc., dated May 16, 2017. The MGS offers the following comment.

General Comment:

The MGS agrees that the existing Coal Combustion Residuals (CCR) impoundments (site 1) do not need further site characterization, at this time. The site characterization performed, as described in the Detailed Site Investigation Report (DSI), dated January 21, 2015, at the proposed CCR impoundment (site 2) that is approximately 1,000 feet south of the existing CCR impoundments (site 1), coupled with the geologic and hydrologic data provided that pertains to the existing CCR impoundments (site 1) (1996 to present data), provides adequate characterization of the geology and hydrology of the site 1. The geologic and hydrologic settings of both sites are similar, with geologic boring logs and potentiometric data of both sites being compared. The hydraulic conductivity testing conducted at the proposed CCR site (site 2) has demonstrated that there is a low potential for groundwater contamination for this area.

If you are in need of further assistance from our office or have questions regarding this evaluation please feel free to contact me at (573) 368-2161.

APPENDIX 2

Baseline Sampling Information

EPA CCR Rule

Appendix III to Part 257—Constituents for Detection Monitoring

Boron

Calcium

Chloride

Fluoride

рΗ

Sulfate

Total Dissolved Solids (TDS)

Appendix IV to Part 257—Constituents for Assessment Monitoring

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt

Lead

Lithium

Mercury

Molybdenum

Selenium

Thallium

Radium 226 and 228 combined

1st Baseline Event – January 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
			II .	Append	lix III					
Boron	mg/L	NA	0.33	<0.5 J	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J
Calcium	mg/L	NA	57	74	220	84	200	250	140	570
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38
Fluoride	mg/L	4	0.43	0.47	0.31	0.28	0.30	0.24	0.35	<0.2 J
рН	SU	NA	6.33	5.81	6.31	7.33	7.09	6.97	7.09	6.51
Sulfate	mg/L	NA	260	360	1100	140	800	1000	600	1800
Total Dissolved Solids	mg/L	NA	690	790	1900	590	1500	1800	1300	2800
				Append	ix IV					
Antimony	mg/L	0.006	<0.002	<0.002 J						
Arsenic	mg/L	0.01	<0.002 J	0.01	<0.01 J	<0.02 J	<0.01	<0.01	<0.01	<0.01
Barium	mg/L	2	0.044	0.0099	0.065	0.086	0.036	0.02	0.042	0.011
Beryllium	mg/L	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J	<0.002 J	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.01	<0.01
Cobalt	mg/L	NA	<0.01 J	<0.01 J	0.046	<0.002 J	0.018	0.0022	0.02	0.014
Lead	mg/L	0.015	<0.002 J	<0.002	<0.01 J	<0.002 J	<0.002	<0.002	<0.002	<0.002 J
Lithium	mg/L	NA	0.057	0.15	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002 J	<0.002 J	<0.01 J	<0.002	<0.01 J	<0.002
Selenium	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Combined Radium	pCi/L	5	<0.477 J	<0.427 J	<2.08	<0.563 J	<0.392 J	<0.446 J	<0.306 J	<0.279 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

2nd Baseline Event – March 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	lix III					
Boron	mg/L	NA	0.90	0.060	<0.25	0.29	0.29	0.34	0.34	0.29
Calcium	mg/L	NA	120	92	260	94	190	250	160	620
Chloride	mg/L	NA	180	70	15	4.4	23	9.0	36	34
Fluoride	mg/L	4	0.28	0.28	0.10	0.38	0.31	0.23	0.31	0.16
рН	SU	NA	5.82	5.68	6.72	7.15	6.94	6.79	6.98	6.22
Sulfate	mg/L	NA	570	400	570	140	710	970	550	1800
Total Dissolved Solids	mg/L	NA	1300	840	1600	590	1500	1800	1200	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002 J	<0.002	<0.002 J	<0.002
Arsenic	mg/L	0.01	<0.002 J	0.024	0.0038	<0.002 J	0.0038	0.0026	0.0025	0.004
Barium	mg/L	2	0.060	0.012	0.034	0.047	0.042	0.026	0.051	0.0089
Beryllium	mg/L	0.004	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cadmium	mg/L	0.005	0.0028	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002 J	0.0034	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.017	0.0095	0.021	<0.002 J	0.02	0.0061	0.0063	0.016
Lead	mg/L	0.015	<0.002 J	<0.002 J	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Lithium	mg/L	NA	0.20	0.15	0.074	0.074	0.14	0.22	0.14	0.30
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002	<0.002 J	0.0041	<0.002 J	0.0038	<0.002
Selenium	mg/L	0.05	<0.002	<0.002	<0.002	0.0021	0.0028	0.0031	0.0031	<0.002
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Combined Radium	pCi/L	5	<0.337 J	<0.389 J	<0.84 J	<0.315 J	<0.336 J	<0.319 J	<0.348 J	<0.329 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

3rd Baseline Event – May 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	lix III					
Boron	mg/L	NA	0.21	0.044	0.027	0.24	0.26	0.25	0.23	0.29
Calcium	mg/L	NA	130	100	91	5	59	11	90	36
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38
Fluoride	mg/L	4	0.28	0.27	0.22	0.55	0.35	0.26	0.43	0.18
рН	SU	NA	5.30	4.37	5.97	6.43	6.60	6.51	6.64	5.82
Sulfate	mg/L	NA	160	540	820	150	920	1400	620	2400
Total Dissolved Solids	mg/L	NA	500	800	1700	590	1500	1800	1100	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002 J							
Arsenic	mg/L	0.01	0.0013	0.027	0.01	0.0043	0.01	0.007	0.0037	0.0082
Barium	mg/L	2	0.021	0.01	0.025	0.045	0.037	0.041	0.04	0.021
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	0.0011	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J	<0.002 J	0.0025	<0.002 J				
Cobalt	mg/L	NA	0.0072	0.0073	0.0071	<0.0005J	0.00081	0.0035	<0.0005J	0.0037
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001 J
Lithium	mg/L	NA	<0.05 J	0.15	<0.05 J	0.074	0.16	0.31	0.12	0.22
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0052	<0.005	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005 J	<0.005	<0.005
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001
Combined Radium	pCi/L	5	<0.355	<0.427 J	<0.386 J	<0.402 J	<0.377 J	<0.357 J	<0.334 J	<0.333 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

4th Baseline Event – August 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.19	0.057	0.067	0.27	0.27	0.29	0.27	0.22
Calcium	mg/L	NA	38	79	110	74	180	220	130	430
Chloride	mg/L	NA	120	77	35	6	35	12	65	49
Fluoride	mg/L	4	0.25	0.15	0.3	0.26	0.31	0.23	0.37	0.22
рН	SU	NA	6.04	5.73	7	7.17	7.04	6.88	7.14	6.29
Sulfate	mg/L	NA	<0.005 J	<0.005	<0.005 J	<0.005 J				
Total Dissolved Solids	mg/L	NA	460	850	730	540	1500	1800	1100	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002 J							
Arsenic	mg/L	0.01	<0.001 J	0.013	<0.001 J	<0.001 J	0.001	<0.001 J	<0.001 J	<0.001 J
Barium	mg/L	2	0.023	<0.01 J	0.012	0.035	0.031	0.014	0.037	<0.01 J
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0052	0.0088	0.0038	<0.0005J	0.00075	<0.0005J	<0.0005J	0.015
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001
Lithium	mg/L	NA	<0.05 J	0.16	<0.05 J	0.078	0.16	0.22	0.11	0.34
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	<0.005	0.0067	<0.005
Selenium	mg/L	0.05	<0.005 J	<0.005	<0.005 J	<0.005 J				
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.424 J	<0.465 J	<0.833	<0.441 J	<0.435 J	<0.45 J	<0.484 J	<0.418 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

5th Baseline Event – October 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III			l		
Boron	mg/L	NA	0.2	0.053	0.047	0.24	0.33	0.34	0.31	0.26
Calcium	mg/L	NA	43	91	100	94	220	260	130	490
Chloride	mg/L	NA	130	65	74	6	29	13	65	56
Fluoride	mg/L	4	0.28	0.18	0.28	0.31	0.39	0.25	0.41	0.28
рН	SU	NA	6.59	5.95	7.21	7.51	8.00	6.98	7.85	6.75
Sulfate	mg/L	NA	99	470	120	120	1100	1100	570	1400
Total Dissolved Solids	mg/L	NA	460	850	580	570	1500	1700	1100	2800
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002 J	<0.002
Arsenic	mg/L	0.01	<0.001	0.014	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001 J	<0.001 J
Barium	mg/L	2	0.028	<0.01 J	0.02	0.03	0.033	0.013	0.037	<0.01 J
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0051	0.0095	0.0013	0.00073	0.0072	<0.0005J	<0.0005J	0.014
Lead	mg/L	0.015	<0.001 J	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05 J	0.17	<0.05	0.078	0.17	0.24	0.12	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0066	<0.005	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005J	<0.005
Thallium	mg/L	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.436J	<0.478J	<0.535J	<0.503J	<0.498J	<0.464J	<0.453J	<0.424J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

6th Baseline Event – March 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	lix III					
Boron	mg/L	NA	0.22	0.052	0.057	0.23	0.29	0.33	0.36	0.26
Calcium	mg/L	NA	38	93	250	86	200	260	170	500
Chloride	mg/L	NA	130	52	19	5.3	29	11	19	39
Fluoride	mg/L	4	0.21	0.12	<0.1 J	0.29	0.29	0.19	0.3	0.12
рН	SU	NA	6.07	5.84	6.67	7.32	7.38	7.15	7.21	6.40
Sulfate	mg/L	NA	130	540	630	150	1100	1000	720	1900
Total Dissolved Solids	mg/L	NA	500	940	1600	620	1700	1900	1400	3000
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	<0.001	0.037	0.0022	0.0013	0.0014	<0.001 J	0.0043	<0.001 J
Barium	mg/L	2	0.021	0.011	0.021	0.033	0.026	0.015	0.027	<0.01 J
Beryllium	mg/L	0.004	<0.001 J	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 J
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J							
Cobalt	mg/L	NA	0.0071	0.0097	0.0096	<0.0005J	0.0022	0.0024	0.0017	0.014
Lead	mg/L	0.015	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05 J	0.17	0.072	0.076	0.16	0.23	0.14	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005 J	<0.005 J	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	0.575	1.63	0.287	1.50	0.803	2.68	1.73	1.62

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

7th Baseline Event – June 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	<0.08J	<0.08J	0.034	0.27	0.31	0.37	0.36	0.26
Calcium	mg/L	NA	42	100	300	89	200	260	160	470
Chloride	mg/L	NA	130	54	110	5.4	23	12	26	48
Fluoride	mg/L	4	0.43	0.19	0.18	0.35	0.42	0.3	0.42	0.21
рН	SU	NA	6.35	5.78	6.62	7.22	7.04	6.93	7.09	6.41
Sulfate	mg/L	NA	78	650	1400	180	940	1300	780	2400
Total Dissolved Solids	mg/L	NA	450	950	2000	610	1600	1800	1400	2900
				Append	dix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	<0.001J	0.1	0.0032	<0.001J	0.0037	<0.001	0.0018	<0.001
Barium	mg/L	2	0.03	0.016	0.048	0.04	0.026	0.017	0.025	<0.01J
Beryllium	mg/L	0.004	<0.001	0.0031	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.004	0.0088	0.0042	<0.0005J	0.0045	0.00087	0.0059	0.0015
Lead	mg/L	0.015	0.0033	0.001	0.0074	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.18	0.053	0.085	0.18	0.25	0.15	0.34
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005	<0.005J	<0.005	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.397J	<0.337J	<0.403	<0.291J	<0.343J	<0.414J	<0.33J	<0.314J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

8th Baseline Event – August 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.16	<0.08J	<0.08J	0.28	0.33	0.34	0.38	0.27
Calcium	mg/L	NA	43	98	83	57	220	250	180	510
Chloride	mg/L	NA	130	45	8.1	5.3	23	12	26	38
Fluoride	mg/L	4	0.26	0.17	0.32	0.27	0.45	0.25	0.4	0.22
рН	SU	NA	6.2	5.7	6.7	7.3	7.0	7.2	7.1	6.3
Sulfate	mg/L	NA	82	550	63	140	920	1100	730	2200
Total Dissolved Solids	mg/L	NA	450	960	450	530	1600	1800	1400	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002
Arsenic	mg/L	0.01	<0.001J	0.013	<0.001J	0.002	<0.001J	<0.001J	<0.001J	<0.001J
Barium	mg/L	2	0.024	0.01	0.018	0.027	0.023	0.018	0.021	<0.01J
Beryllium	mg/L	0.004	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001J
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002J	<0.002	0.0026	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0036	0.01	0.00067	<0.0005J	0.0023	<0.0005J	0.0051	0.014
Lead	mg/L	0.015	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.17	<0.05J	0.073	0.18	0.22	0.15	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005J	<0.005J	<0.005J	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.42J	<0.417J	<0.473	<0.476J	<0.383J	<0.389J	<0.291J	<0.346J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

APPENDIX 3

Monitoring Well Field Inspection Sheets and Field Notes

Facility: _	A 54	WING B	2703)		d Sampling Monitoring \	Well 4-Digit			32	
December 1 man					Samp	le Bli	ind Duplica	te Fie	eld Blank].
Purge Info Method of		Dedicated Bla	dder Pump	with ¼ - in	ch Diameter	Tubing				
					7 m) 41 W				
		Actual Purg	e Volume R	emoved: _	elle	peg			-	
Date / Tim	e Initiated:	5-10 -2	2 @	3:42	Date / Time	Complete	ed: <u>5-</u> (C	-22 @		
Well Purge	ed To Drynes	s?: Y/N		Gas De	tected? Y /					
Purge Data					·					
	200 ml									Other
	Purge	Cumulative			Specific	Disc	solved		Tarak	Other (Color,
	Rate	Volume	Temp.	рН	Conductivi		ygen	ORP	1 WOOD	Clarity,
Time	(mL/min)	()	(°C)	(SU)	(mS/cm)	. 0/	ng/L)	(MV)		Odor)
8:46	200	2AC	16.6	6.53	731	-	91	45.0	1.5	
;47		1200	11.9	6.43	733	8	61 5	56.3	. 2>	
(50		1	11	EIIN	734		57 .	70 7	200	
		1600	11 6	6,42	600		50	19:1	VU	
:25		5000	1617	6.40	732	- 0	50 0	olil	1:40	
		rl	2001	pë!	Field I	nspection		dead	Fair F	
		11	11 -6	3	rieidi	ISPECTION		Good	<u>Fair</u> <u>F</u>	Poor
Time a same	d and	4	15)	Access			G	F F	P
Time samp	oled	4	15.7)	Access Pad Co	ndition		G G		P P
Time samp	oled	705.1	:57	PA	Access Pad Co Casing	ondition Condition		G		Р
Time samp	1.0	705 W	1557	RC.	Access Pad Co Casing Lockin	ndition		G G G		P P P
	1.0	70° W	15.7	RC.	Access Pad Co Casing Lockin Riser C	ondition Condition g Cap & Lo Condition aspection		G G G G Yes	F F F F No	P P P P P
Weather C	conditions	705 Wi	15.7	RC.	Access Pad Co Casing Lockin Riser C Field II	ondition Condition g Cap & Lo Condition nspection O Visible		G G G G	F F F F	P P P P P <u>N/A</u>
Weather C	1.0	70° WI	15.7	RC.	Access Pad Co Casing Lockin Riser C Field I Well II Standi	ondition Condition g Cap & Lo Condition nspection O Visible ng Water		G G G G Yes	F F F F No	P P P P P <u>N/A</u> N/A
Weather C	conditions	705 WI 3.07	15.7	RC.	Access Pad Co Casing Lockin Riser C Field I Well II Standi Clear C	condition Condition g Cap & Lo Condition nspection O Visible ng Water of Weeds		G G G G Yes	F F F F No	P P P P N/A N/A N/A
Weather C	conditions	705 Wi 3.07' 4.87	75.7 7.25	RC.	Access Pad Co Casing Lockin Riser C Field II Well II Standi Clear o Measu	ondition Condition g Cap & Lo Condition nspection O Visible ng Water	ck	G G G G Yes	F F F F No	P P P P P N/A N/A N/A N/A
Weather C Water Leve	conditions	705 WI 3.07 4.87	15.7	RC.	Access Pad Co Casing Lockin Riser C Field II Well II Standi Clear C Measu Split sa	condition Condition g Cap & Lo Condition nspection O Visible ng Water of Weeds ring Point	ock MDNR	G G G G Yes	F F F F No	P P P P N/A N/A N/A
Weather C Water Leve Water Leve	conditions	4.87	15.7	RC.	Access Pad Co Casing Lockin Riser C Field I Well II Standi Clear c Measu Split sa Mainte Decon	ondition Condition g Cap & Lo Condition nspection O Visible ng Water of Weeds ring Point ample with enance Per tamination	MDNR formed	G G G G Yes	F F F F No	P P P P N/A N/A N/A N/A N/A N/A
Weather C Water Leve Water Leve	conditions	705 W. 307 (1.8) [Rick Elgin	i & Ryan Or	T.C.	Access Pad Co Casing Lockin Riser C Field II Standi Clear c Measu Split sa Mainte Decon Equipr	condition Condition g Cap & Lo Condition D Visible ng Water of Weeds ring Point ample with enance Per tamination	MDNR formed Normal ration Norm	G G G G Yes	F F F F No	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A
Weather C Water Leve Water Leve	conditions	4.87	1 & Ryan Or	RC,	Access Pad Co Casing Lockin Riser C Field II Standi Clear c Measu Split sa Mainte Decon Equipr Redeve	condition Condition g Cap & Lo Condition nspection O Visible ng Water of Weeds ring Point ample with enance Per tamination nent Calibr	MDNR formed Normal ration Norm	G G G G Yes	F F F F No	P P P P N/A
Weather C Water Leve Water Leve	el Start el Finish C Field Samp	4.87	i & Ryan Or	T.C.	Access Pad Co Casing Lockin Riser C Field II Standi Clear o Measu Split sa Mainte Decon Equipm Redeve Any de	condition Condition g Cap & Lo Condition nspection O Visible ng Water of Weeds ring Point ample with enance Per tamination nent Calibr	MDNR formed Normal ration Norm	G G G G Yes	F F F F No	P P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A
Weather C Water Leve Water Leve Name (ME	conditionsel Startel Finishel F	4.87	1 & Ryan Or	T.C.	Access Pad Co Casing Lockin Riser C Field II Standi Clear o Measu Split sa Mainte Decon Equipm Redeve Any de	condition Condition g Cap & Lo Condition nspection O Visible ng Water of Weeds ring Point ample with enance Per tamination nent Calibr	MDNR formed Normal ration Norm	G G G G Yes	F F F F NO Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	P P P P N/A
Weather C Water Leve	conditionsel Startel Finishel F	4.87	1 & Ryan Or	tbals MW-	Access Pad Co Casing Lockin Riser C Field II Standi Clear o Measu Split sa Mainte Decon Equipm Redeve Any de	condition Condition g Cap & Lo Condition nspection O Visible ng Water of Weeds ring Point ample with enance Per tamination nent Calibr	MDNR formed Normal ration Norm	G G G G Yes	F F F F NO Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	P P P P N/A
Weather C Water Leve Water Leve Name (ME Sampler Sig Historical I	conditionsel Startel Finishel F	eler): Rick Elgin	26	MW- 9303R	Access Pad Co Casing Lockin Riser C Field II Standi Clear of Measu Split so Mainte Decon Equipm Redeve Any de Sedime MW- 0304R	condition Condition g Cap & Lo Condition nspection O Visible ng Water of Weeds ring Point ample with enance Per tamination nent Calibr elopment I viations fre	MDNR formed Normal ration Norm Needed om SAP ess Checked	G G G G Yes	F F F F S Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	P P P N/A
Weather C Water Leve Water Leve Name (ME Sampler Sig Historical I Constituent pH	el Start el Finish C Field Samp gnature	Units S.U.	MW- 0302R 6.47	MW- 9303R 6.88	Access Pad Co Casing Lockin Riser O Field II Standi Clear o Measu Split sa Mainte Decon Equipr Redeve Any de Sedime MW- 0304R 6.62	ondition Condition g Cap & Lo Condition nspection O Visible ng Water of Weeds ring Point ample with enance Per tamination nelopment I eviations freent Thickne MW- 0305R 6.81	MDNR formed Normal ration Norm Needed om SAP ess Checked MW- 0306R 6.54	G G G G G Yes Y Y Y MW- 0307 6.41	F F F No No No No No No No No No No No No No	P P P P N/A
Weather Constituent Water Level Water Level Name (ME) Sampler Signific Constituent pH Specific Constituent	conditionsel Startel Finishel	Units S.U. mS/cm	MW- 0302R 6.47 0.866	MW- 9303R 6.88 0.663	Access Pad Co Casing Lockin Riser C Field II Standi Clear of Measu Split sa Mainte Decon Equipr Redeve Any de Sedimo	ondition Condition Grap & Lo Condition Inspection Orisible Ing Water of Weeds Iring Point Inspection Inspection Orisible Ing Water Ing Point Inspection In	MDNR formed Normal ration Norm Needed om SAP ess Checked MW- 0306R 6.54 1.36	G G G G G Yes Y Y MW- 0307 6.41 1.04	F F F F No N N N N N N N N N N N N N N N	P P P P N/A
Weather Constituent Description Constituent	conditionsel Startel Finishel F	Units S.U. mS/cm ft	MW- 0302R 6.47 0.866 46.1	MW- 9303R 6.88 0.663 42.1	Access Pad Co Casing Lockin Riser O Field II Standi Clear o Measu Split sa Mainte Decon Equipm Redeve Any de Sedime MW- 0304R 6.62 1 08 23.9	ondition Condition g Cap & Lo Condition D Visible ng Water of Weeds ring Point ample with enance Per tamination nent Calibr elopment I eviations free the Thicknet MW- 0305R 6.81 0.733 34.7	MDNR formed Normal ration Norm Needed om SAP ess Checked MW- 0306R 6.54 1.36 69-3	G G G G G Yes Y Y Y Y Y Y Y Y Y Y Y Y Y Y 1.04 67.1	F F F No N N N N N N N N N N N N N N N N	P P P P N/A
Weather Constituent pH Specific Concord Well Decoder	conditionsel Startel Finishel F	Units S.U. mS/cm ft ft	MW- 0302R 6.47 0.866 46.1 36.6	MW- 9303R 6.88 0.663 42.1 23.4	Access Pad Co Casing Lockin Riser O Field II Standi Clear o Measu Split sa Mainte Decon Equipm Redeve Any de Sedime MW- 0304R 6.62 1.08 23.9 8.0	ondition Condition g Cap & Lo Condition nspection O Visible ng Water of Weeds ring Point ample with enance Per tamination nent Calibr elopment N eviations frient Thickne MW- 0305R 6.81 0.733 34.7	MDNR formed Normal ration Norm Needed om SAP ess Checked MW- 0306R 6.54 1.36 69-3 49.6	G G G G G Yes Y Y Y MW- 0307 6.41 1.04 67.1 62.2	F F F F N N N N N N N N N N N N N N N N	P P P P N/A
Weather Constituent Description Constituent	conditionsel Startel Startel Finishel Finish	Units S.U. mS/cm ft	MW- 0302R 6.47 0.866 46.1	MW- 9303R 6.88 0.663 42.1	Access Pad Co Casing Lockin Riser O Field II Standi Clear o Measu Split sa Mainte Decon Equipm Redeve Any de Sedime MW- 0304R 6.62 1 08 23.9	ondition Condition g Cap & Lo Condition D Visible ng Water of Weeds ring Point ample with enance Per tamination nent Calibr elopment I eviations free the Thicknet MW- 0305R 6.81 0.733 34.7	MDNR formed Normal ration Norm Needed om SAP ess Checked MW- 0306R 6.54 1.36 69-3	G G G G G Yes Y Y Y Y Y Y Y Y Y Y Y Y Y Y 1.04 67.1	F F F No N N N N N N N N N N N N N N N N	P P P P N/A

	Bro	15	2022 Fiel	d Sampling Lo				>	
Facility: Pulton	De Permit #10	2703)	_	Monitoring We	1 1 2				
				Sample	Bli	nd Duplicat	e Fiel	ld Blank].
Purge Information:	Dadisated Di-			-h Diameter To	hin a	,			
Method of Well Purge:	Dedicated Bia	iaaer Pump	witn ¼ - in			/			
	Actual Purg	e Volume R	emoved:	2000	my				
Date / Time Initiated:	5- 10 -2	2 @ /	23	Date / Time Co	ompleter	1. 5. //	n -22 @		
		2 (1)			6	- (6	22 (1)		
Well Purged To Drynes	s?: Y / 🕦		Gas De	etected? Y / 🐧	ソ				
Purge Data: 50 ml			, ,		_				
200 ml Purge Rate	Cumulative Volume	Temp.	рН	Specific Conductivity		olved ygen	ORP	TONS	Other (Color, Clarity,
Time (mL/min)	()	(°C)	(SU)	(mS/cm)	(m	g/L)	(MV)		Odor)
1129 200	800	17.1	5.97	1253	1.	12 13	34.1	2/2	
(31	1200	17.2	5.84	12 52	1	23 3	99	470	
138	1/00	141	E 03	12 4 d	1	Ca I	29/	Cac	
. %	1600	1001	CAL	100 4 9	R N	Jac V	201	606	
35	2000	11.0.	5.50	1248	PL	19 05	807	804	
		1.5	_	Field Ins	pection	-	Goed	<u>Fair</u>	Poor
		1:3	5	Access			6	F	Р
Time sampled		1,0,	<u> </u>	Pad Cond			(G)	F	
	1 DAG		1.	Casing Co		.1.	G	F	2
Weather Conditions	01 10'	Win	. Cy	Locking (Riser Cor		CK	(g)	- (- B
weather conditions		<i>r</i>	1	Field Ins			Yes	N.o.	N/A
/	(X) (C)	Į.		Well ID V			Y		N/A
Water Level Start	100			Standing	Water		Υ	CHA	N/A
	1 51			Clear of \			X	(N)	N/A
	(1)			Measurir			CY	N	N/A
Water Level Finish				Split sam			Y		N/A
			,	Maintena Decontar				N	N/A N/A
Name (MEC Field Samp	oler): Rick Elgir	& Ryan Or	tbals			ation Norm	al XX	N	N/A
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10	1/		Redevelo				N.	N/A
	1 1			Any devi	ations fro	om SAP	Υ	(N)	N/A
Sampler Signature	(//			Sediment	t Thickne	ss Checked	Υ	N	N/A
Historical Data:	Col								
	1	MW-	MW-		MW-	MW-	MW-	MW-	MW-
Constituent		0302R	0303R	0304R	0305R	0306R	0307	0308	0309
m11	Units	1	0.00	000	C 04	CFA	0.4	170	7 00
pH Specific Conductance	S.U.	6.47	6.88	6.62	6.81	6.54	6.41	6.76	7.05
Specific Conductance	S.U. mS/cm	6.47 0.866	0.663	1.08	0.733	1.36	1.04	0.907	0.786
Specific Conductance Total Well Depth	S.U. mS/cm ft	6.47 0.866 46.1	0.663 42.1	1.08	0.733 34.7	1.36 69.3	1.04 67.1	0.907 58.9	0.786 74.0
Specific Conductance Total Well Depth Average GW Depth	S.U. mS/cm ft	6.47 0.866 46.1 36.6	0.663 42.1 23.4	1.08 23.9 8.0	0.733 34.7 13.9	1.36 69.3 49.6	1.04 67.1 62.2	0.907 58.9 29.8	0.786 74.0 48.4
Specific Conductance Total Well Depth	S.U. mS/cm ft	6.47 0.866 46.1	0.663 42.1	1.08	0.733 34.7	1.36 69.3	1.04 67.1	0.907 58.9	0.786 74.0

(Min Purged Amount)

	11	in Roll		2022 Fiel	d Sampling Loរុ	B				
E 1124	14500	W COLEN	500		A describe outcom SATEII	4 Distal	. D.// A/		40	
Facility:	Furte	n LP (Permit #10	2403)		Monitoring Well	1 .				1
Dunga Inf					Sample [Blind	d Duplicat	e Fie	eld Blank	j.
_	formation: of Well Purge	: Dedicated Bla	dder Pump	with ½ - in	ch Diameter Tub	ing				
		Actual Purge	e Volume R	emoved:	1600				-	
Date / Tir	me Initiated:	5- 10 -2	2 @	1:23	Date / Time Cor	mpleted:	5-10) _{-22 @}		
		ss?: Y (N)			etected? Y / N					
Purge Da	ıta: 50 ml					,				
	200 ml									Other
	Purge	Cumulative			Specific	Diago	h.c.d		Tak	(Color,
	Rate	Volume	Temp.	рН	Conductivity	Disso		ORP	TIRK	Clarity,
Time	(mL/min)	()	(°C)	(SU)	(mS/cm)	(mg/		(MV)		Odor)
01:00		400	17,	1 401	1105			87.1	~7!)	Repl
25		-	1601	0 (200	40	Q 1		ia	LEGAL
127		800	[70]	6-11	0/4/	r 6		79.4	35	
24		1200	17.0	6.47	2184	4 1	75	168	24	
:31		1600	[70]	6.48	2200	3.4	50	76.0	29	
		1400		Q .	96066			4.0		
				1				- 17		
					-1.11.	-		1		
		7,	76		Field Inspe	ection		Good		<u>Poor</u>
Time sam	nled	9:.	35		Access		/	G	Fair f	Р
Time sam	npled	q:.	35	,	Access Pad Condi	tion	(G G		
Time sam	npled	9:.	35	(11	Access Pad Condi Casing Cor	tion ndition		G		P P
	npled	9:. 70°	35 Wir	ly	Access Pad Condi	tion ndition p & Lock		G G		P P P
		9:. 70°	35 wir	ly	Access Pad Condi Casing Cor Locking Ca	tion ndition p & Lock lition		G G		P P P
		9:. 70°	35 wir	ly	Access Pad Condi Casing Cor Locking Ca	tion ndition p & Lock lition ection		G G G G	F F F F	P P P P
	Conditions_	9:. 70° 5.93	35 wir	ly	Access Pad Condi Casing Cor Locking Ca Riser Cond Field Inspe Well ID Vis Standing V	tion ndition p & Lock lition ection sible Vater		G G G G	F F F F	P P P P P N/A N/A
Weather	Conditions_	9:. 70° 5.93	35 wir	ly	Access Pad Condi Casing Cor Locking Ca Riser Cond Field Inspe Well ID Vis Standing V Clear of W	tion ndition p & Lock lition ection sible Vater eeds		G G G G	F F F F	P P P P N/A N/A N/A
Weather Water Lev	Conditions vel Start	9:. 70° 5.93	35 wir	ly	Access Pad Condi Casing Cor Locking Ca Riser Cond Field Inspe Well ID Vis Standing V Clear of W Measuring	tion ndition p & Lock lition ection sible Vater eeds Point		G G G G	F F F F	P P P P N/A N/A N/A N/A
Weather	Conditions vel Start	9:. 70° 5.93 W.93	35 wir	ly	Access Pad Condi Casing Cor Locking Ca Riser Cond Field Inspe Well ID Vis Standing V Clear of W Measuring Split samp	tion ndition p & Lock lition ection sible Vater eeds Point le with M	1DNR	G G G G	F F F F	P P P P N/A N/A N/A N/A N/A
Weather Water Lev	Conditions vel Start	9:. 70° 5.93 W.93	35 wir	ly	Access Pad Condi Casing Cor Locking Ca Riser Cond Field Inspe Well ID Vis Standing V Clear of W Measuring Split samp Maintenar	tion ndition p & Lock lition ection sible Vater eeds Point le with Nace Perfo	1DNR rmed	G G G G	F F F F	P P P P N/A N/A N/A N/A N/A N/A
Weather Water Lev	Conditions_ vel Start vel Finish	5.93 D.93	35 Wil	Ly thals	Access Pad Condication Casing Condication Locking Canding Canding Canding Value Standing Value Clear of Wall ID Vis Standing Value Measuring Split samp Maintenar Decontam	tion ndition p & Lock lition ection sible Vater eeds Point le with Mace Perfo	1DNR rmed lormal	G G G G Yes Y	F F F F F F F F F F F F F F F F F F F	P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A
Weather Water Lev	Conditions_ vel Start vel Finish	70° 5.93 12.9°	35 Will	tbals 2	Access Pad Condi Casing Cor Locking Ca Riser Cond Field Inspe Well ID Vis Standing V Clear of W Measuring Split samp Maintenar Decontam Equipment	tion ndition p & Lock lition ection sible Vater eeds Point le with M nce Perfo ination N	1DNR rmed Iormal ion Norm	G G G G Yes Y	F F F F	P P P N/A
Weather Water Lev	Conditions_ vel Start vel Finish	5.93 D.93	35 Will	tbals	Access Pad Condication Casing Condication Locking Canding Canding Canding Value Standing Value Clear of Wall ID Vis Standing Value Measuring Split samp Maintenar Decontam Equipment Redevelop	tion ndition p & Lock lition ection sible Vater eeds Point le with Mace Perfo ination Nat Calibrat ment Ne	1DNR rmed lormal ion Norm eded	G G G G Yes Y	F F F F F F F F F F F F F F F F F F F	P P P N/A
Weather Water Lev	Conditions_vel Startvel Finish	5.93 D.93	35 Wil	tbals	Access Pad Condi Casing Cor Locking Ca Riser Cond Field Inspe Well ID Vis Standing V Clear of W Measuring Split samp Maintenar Decontam Equipment	tion ndition p & Lock lition cible Vater eeds Point le with Mace Perfo ination N t Calibrat ment Ne	1DNR rmed Iormal ion Norm eded n SAP	G G G G Yes Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	F F F F 2 2 2 2 2 2 2 2 2 2	P P P N/A
Water Lev Water Lev Name (M	Conditions_ vel Start vel Finish EC Field Sam Signature	5.93 D.93	35 Will	tbals	Access Pad Condication Casing Condication Locking Candication Riser Condication Field Inspection Well ID Vision Standing Victorian Clear of Wideasuring Split samp Maintenar Decontam Equipment Redevelop Any deviat	tion ndition p & Lock lition cible Vater eeds Point le with Mace Perfo ination N t Calibrat ment Ne	1DNR rmed Iormal ion Norm eded n SAP	G G G G Yes Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	F F F F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	P P P N/A
Weather Water Lev Water Lev	Conditions_ vel Start vel Finish EC Field Sam Signature	5.93 D.93	35 Will 35 MW-	tbals MW-	Access Pad Condi Casing Cor Locking Ca Riser Cond Field Inspe Well ID Vis Standing V Clear of W Measuring Split samp Maintenar Decontam Equipment Redevelop Any deviat Sediment	tion ndition p & Lock lition cible Vater eeds Point le with Mace Perfo ination N t Calibrat ment Ne	1DNR rmed Iormal ion Norm eded n SAP	G G G G Yes Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	F F F F 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	P P P N/A
Water Lev Water Lev Name (M	Conditions_ vel Start vel Finish EC Field Sam Signature	5.93 D.93		<u></u>	Access Pad Condication Casing Condication Locking Canding Canding Canding Variation Field Inspective Well ID Vision Standing Variation Clear of Wall Measuring Split samp Maintenar Decontam Equipment Redevelop Any deviat Sediment	tion ndition p & Lock lition ection sible Vater eeds Point le with Mace Perfo ination N t Calibrat ment Ne ions fron Thickness	1DNR rmed Iormal ion Norm eded n SAP s Checked	G G G G Yes Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	F F F F 2 2 2 2 2 2 2 2 2 2	P P P N/A
Weather Water Lev Water Lev Name (M Sampler S Historical Constituent	Conditions_ vel Start vel Finish EC Field Sam Signature	pler): Rick Elgin Units S.U.	MW- 0302R 6.47	MW- 0303R 6.88	Access Pad Condication Casing Condication Locking Canding Canding Canding Variation Well ID Vision Standing Variation Clear of Ward Measuring Split samp Maintenand Decontam Equipment Redevelop Any deviat Sediment MW- 0304R 03 6.62 6	tion ndition p & Lock lition ection sible Vater eeds Point le with M nce Perfo ination N t Calibrat ment Ne ions fron Thickness	1DNR rmed lormal ion Norm eded n SAP s Checked MW- 0306R 6.54	G G G G G Yes Y Y Y Y Y MW- 0307 6.41	F F F F NO N N N N N N N N N 0308 6.76	P P P P N/A
Weather Water Lev Water Lev Name (M Sampler S Historical Constituen pH Specific Cor	Conditions_ vel Start vel Finish EC Field Sam Signature I Data:	John John John John John John John John	MW- 0302R 5.47 0.866	MW- 0303R 6.88 0.663	Access Pad Condir Casing Cor Locking Ca Riser Cond Field Inspe Well ID Vis Standing V Clear of W Measuring Split samp Maintenar Decontam Equipment Redevelop Any deviat Sediment MW- 0304R 03 6.62 1.08 0	tion ndition p & Lock lition sible Vater eeds Point le with Mace Perfo ination N t Calibrat ment Ne ions fron Thickness 1W- 105R 181 1733	IDNR rmed Iormal ion Norm eded n SAP s Checked MW- 0306R 6.54	Yes Yes Y Y Y Y Y Y Y Y Y Y Y Y Y	F F F F NO N N N N N N N N N 0308 6.76 0.907	P P P P N/A
Weather Water Lev Water Lev Name (M Sampler S Historical Constituent pH Specific Cor Total Well I	Conditions_ vel Start vel Finish EC Field Sam Signature I Data: tt nductance Depth	Units S.U. mS/cm ft	MW- 0302R 6.47 0.866 46.1	MW- 0303R 6.88 0.663 42.1	Access Pad Condicating Carriage Condicating Carriage Condicating Carriage Well ID Vision Standing Victoria Clear of Windows Measuring Split samp Maintenar Decontam Equipment Redevelop Any deviate Sediment Carriage Condicating Condicat	tion ndition p & Lock lition sible Vater eeds Point le with M ce Perfo ination N t Calibrat ment Ne ions fron Thickness 1W- 505R 581 733	MDNR rmed lormal ion Norm eded n SAP s Checked MW- 0306R 6.54 1.36 69.3	G G G G G Y Y Y Y Y Y Y Y Y Y 1.04 67.1	F F F F F N N N N N N N N 0308 6.76 0.907 58.9	P P P P N/A
Weather Water Lev Water Lev Name (M Sampler S Historical Constituen pH Specific Cor Total Well I	vel Start vel Start vel Finish EC Field Sam Signature I Data: t nductance Depth W Depth	Units S.U. mS/cm ft ft	MW- 0302R 6.47 0.866 46.1 36.6	MW- 0303R 6.88 0.663 42.1 23.4	Access Pad Condicating Carriage Condicating Carriage Condicating Carriage Well ID Vision Standing Vision Clear of Wision Measuring Split samp Maintenary Decontam Equipment Redevelop Any deviate Sediment Sedimen	tion ndition p & Lock lition sible Vater eeds Point le with M nce Perfo ination N t Calibrat ment Ne ions fron Thickness 1W- 805R .81 733 4.7	MW- 0306R 6.54 1.36 69.3 49.6	MW-0307 6.41 1.04 67.1 62.2	F F F F F N N N N N N N N 0308 6.76 0.907 58.9 29.8	P P P P N/A
Weather Water Lev Water Lev Name (M Sampler S Historical Constituent pH Specific Cor Total Well I Average GV Pump Dept	vel Start vel Start vel Finish EC Field Sam Signature I Data: t nductance Depth W Depth	Units S.U. mS/cm ft	MW- 0302R 6.47 0.866 46.1	MW- 0303R 6.88 0.663 42.1	Access Pad Condicating Carriage Condicating Carriage Condicating Carriage Well ID Vision Standing Vision Clear of Wision Measuring Split samp Maintenary Decontam Equipment Redevelop Any deviate Sediment Sedimen	tion ndition p & Lock lition sible Vater eeds Point le with M ce Perfo ination N t Calibrat ment Ne ions fron Thickness 1W- 505R 581 733	MDNR rmed lormal ion Norm eded n SAP s Checked MW- 0306R 6.54 1.36 69.3	G G G G G Y Y Y Y Y Y Y Y Y Y 1.04 67.1	F F F F F N N N N N N N N 0308 6.76 0.907 58.9	P P P P N/A

(Min Purged Amount)

Astur	er to	onds		d Samplinį			,	-1/	
4 //	LE (Permit #10			Monitoring	Well 4-Digit	D:MW	230		
				Sami	ple Bli	ind Dunlica	te C Fie	ld Blank	
Purge Information:				Samp		t. C	A X	2	
Method of Well Purge:	Dedicated Bla	dder Pump	with ¼ - in	ch Diametei	r Tubing	10	25	101	1
				16086)	-		`	
	Actual Purg	e Volume Re	emoved:	CUOC	8				
Date / Time Initiated:	5- 10 -2	2 0 1	00:00	Date / Tim	a Camplata	d. = (C	-22 @		
Date / Time initiated.	<u></u>	2 (0) (Date / IIIII	e complete	u. <u></u>	-22 (0)		
Well Purged To Dryness	s?: Y / 🕡 🗀		Gas De	tected? Y	/R)				
Purge Data: 50 ml					O				
200 ml		C+						1.	Other
Purge	Cumulative			Specific	, Di-	l l		7,10	(Color,
Rate	Volume	Temp.	рН	Conductiv		solved Tygen	ORP	0100	Clarity,
Time (mL/min)	()	(°C)	(SU)	(mS/cm	,	ng/L)	(MV)		Odor)
10:00 200	ELDA	100	7311	031	1	90 /	148	40	
CAU	606	14.0	2.04	700	0 /	30 0	0	E-1/	
100	000	160	1.1)	9.50	1 6:	79 (70.0	27	
104	2Q1	16.7	1.50	9a.	7 1.	247	4.5	13	
-0X	(600)	171	730	92	1/0	23 9	4.6	77	
			7.04	1			0	- /	
				Eiold	Inspection		7	Fair I	2001
		101	L W	Acces			Good	<u>Fair</u> <u>I</u> F	Poor P
Time sampled		10.1	U		Condition	1	G	F	P
	1.200	10	~ /	Casin	g Condition	W Property Control	G/	F	Р
	all oc	19 1	1 ank	1	ng Cap & Lo	ck	\$	F	Р
Weather Conditions		<u>u</u>	10-00	1	Condition	/	G	F	P
	100				Inspection		Yes	No.	<u>N/A</u>
Water Level Start	100				ID Visible ling Water		Y ~~		N/A N/A
water Level Start	100	/			of Weeds		(2)	N	N/A
	15.39	,			uring Point			N	N/A
Water Level Finish	1				sample with		Y	\mathbb{N}	N/A
					tenance Per		×	(V)	N/A
Nama /MEC Field Comm	low). Diek Flein	0 Dunmou	hala.		ntamination			N	N/A
Name (MEC Field Sampl	ier): Kick Eigir	1 & RYan JUN	bais		ment Calibr velopment N		iai (V) N	N/A N/A
	/-	7			eviations fr		\(\frac{1}{2}\)	()	N/A
Sampler Signature	//	1			nent Thickne		I Y	//N/	N/A
Historical Data:	09								
1100011001		MW-	MW-	MW-	MW-	MW-	MW-	MW-	MW-
Constituent	Units	0302R	0303R	0304R	0305R	0306R	0307	0308	0309
рН	S.U.	6.47	6.88	6.62	6.81	6.54	6.41	6.76	7.05
Specific Conductance	mS/cm	0.866	0.663	1.08	0.733	1.36	1.04	0.907	0.786
Total Well Depth	ft	46.1	42.1	23.9	34.7	69.3	67.1	58.9	74.0
Average GW Depth	ft	36.6	23.4	8.0	13.9	49.6	62.2	29.8	48.4
Pump Depth (est.) 2 System Volumes (est)	ft	38.0	31.5	21.6	24.5	59.5	62.0	44.0	57.5
(Min Purged Amount)	L	2.45	2.32	2.13	2.19	2.87	2.91	2.57	2.83

Astur	y tond	9	2022 Fie	ld Sampling Lo	g			5 A	
Facility:		(2703)		Monitoring Well	4-Digit II)	D: MW =	090	1	
				Sample				eld Blank	1
Purge Information:				Sumple [A Dilling	а Барпса	116	sid blank	_]•
Method of Well Purge	e: Dedicated Bla	adder Pump	with ¼ - in	nch Diameter Tub	ing				
	4.1. 15	V I -		1600					
	Actual Purg							-	
Date / Time Initiated:	5- (0 -2	2 @	1.09	Date / Time Co	mpleted:	5- () -22 @		
	^		1	78.					
Well Purged To Dryne	ss?: Y / (N)		Gas D	etected?Y/N)				
Purge Data: 50 ml									
200 ml								7.1	Other
Purge	Cumulative			Specific	Dissol	hod		10/	(Color,
Rate	Volume	Temp.	рН	Conductivity	Охуд		ORP	200	Clarity,
Time (mL/min)	()	(°C)	(SU)	(mS/cm)	(mg/		(MV)		Odor)
11:06 200	400	16.2	62	7543	19		91	5	
~ A/A	000	11 4	100	225	2	23 1	110 1	1121	
.00	800	161	4000	7 6 6 7	00		1000	404	
[0]:	1200	1601	6.90	2268	1 2 6	5/	46.2	379	
772	16000	16.0	1.79	2960	0 5	15/	441	> 05	
0.0	7000	.0.0	4.01	3000	1		- 61(9.0	
					-				
1	11	116		Field Insp	ection		Good		Poor
Time sampled	11	1:15		Access			G	<u>Fair</u> <u>I</u> F	Р
Time sampled	11	1:15		Access Pad Condi	tion		G G		P P
Time sampled	// JK	1:15		Access Pad Condi Casing Co	tion ndition		G		Р
Time sampled	11 161 w	1:15 in bu		Access Pad Condi	tion ndition ap & Lock		G G G		P P P
Į.	11 W	is bu	8	Access Pad Condi Casing Co Locking Ca Riser Cond Field Inspe	tion ndition ap & Lock dition ection		G G G		P P P
Weather Conditions_	11 101 W	1:15 ir bu	8	Access Pad Condi Casing Col Locking Cal Riser Cond Field Inspe	tion ndition ap & Lock dition ection sible		G G G G G		P P P P <u>N/A</u> N/A
Į.	11 18 W 905	1:15 ir bu	>	Access Pad Condi Casing Col Locking Cal Riser Cond Field Inspection Well ID Vision	tion ndition ap & Lock dition ection sible Water		G G G G G		P P P P N/A N/A
Weather Conditions_	11 18 W 9.5	1:15 in bu	\$	Access Pad Condi Casing Co Locking Ca Riser Cond Field Insp Well ID Vis Standing V Clear of W	tion ndition ap & Lock dition ection sible Water /eeds		G G G G G		P P P P N/A N/A N/A
Weather Conditions_	11 18 W 9.5 19.4	1:15 ir bu	>	Access Pad Condi Casing Col Locking Cal Riser Cond Field Inspection Well ID Vision	tion ndition ap & Lock dition ection sible Water Veeds g Point		G G G G G		P P P P N/A N/A N/A N/A
Weather Conditions	11 18 W 9.5 19.4	1:15 in bu	\$	Access Pad Condi Casing Condi Locking Cand Riser Cond Field Inspo Well ID Vis Standing V Clear of W Measuring	tion ndition ap & Lock dition ection sible Water Veeds Point le with N	1DNR	G G G G G		P P P P N/A N/A N/A
Weather Conditions Water Level Start Water Level Finish	11 18 W 9.5 19.4	1:15 in bu	>	Access Pad Condi Casing Co Locking Ca Riser Cond Field Insp Well ID Vis Standing V Clear of W Measuring Split samp Maintenan Decontam	tion ndition ap & Lock dition ection sible Vater eeds Point le with M nce Perfo ination N	IDNR rmed lormal	G G G G Yes Y Y Y Y Y Y		P P P N/A N/A N/A N/A N/A N/A N/A N/A
Weather Conditions	11 161 W 9 c 5 19.4 pler): Rick Elgir	in bu	tbals	Access Pad Condi Casing Co Locking Ca Riser Cond Field Insp Well ID Vis Standing V Clear of W Measuring Split samp Maintenan Decontam Equipmen	tion ndition ap & Lock dition ection sible Water Geds Point le with Mace Perfo ination N t Calibrat	1DNR rmed lormal ion Norm	G G G G Yes Y Y Y Y Y Y		P P P N/A N/A N/A N/A N/A N/A N/A N/A N/A
Weather Conditions Water Level Start Water Level Finish	11 W W 9 5 19. 4 5 19.	is but of state of st	tbals	Access Pad Condi Casing Co Locking Ca Riser Cond Field Insp Well ID Vis Standing V Clear of W Measuring Split samp Maintenan Decontam Equipmen Redevelop	tion ndition ap & Lock dition ection sible Water Veeds Point le with M nce Perfo ination N t Calibrat	1DNR rmed lormal ion Norm eded	G G G G Yes Y Y Y Y Y Y	F F F F F F F F F F F F F F F F F F F	P P P N/A
Weather Conditions Water Level Start Water Level Finish Name (MEC Field Sam	11 W W 9 c 5 19. 4 c 5 pler): Rick Elgir	ils in bu	tbals	Access Pad Condi Casing Condi Locking Candi Riser Condi Field Insperior Well ID Vist Standing Volear of Word Measuring Split samp Maintenan Decontam Equipmen Redevelop Any deviate	tion ndition ap & Lock dition ection sible Water Veeds g Point le with M nce Perfo ination N t Calibrat oment Ne	1DNR rmed lormal ion Norm eded n SAP	G G G G Yes Y	F F F F F F F F F F F F F F F F F F F	P P P N/A
Weather Conditions Water Level Start Water Level Finish Name (MEC Field Sam) Sampler Signature	11 18 W 19. 4 19. 4 pler): Rick Elgin	1.15 1.15 1.8 Ryan Or	tbals	Access Pad Condi Casing Co Locking Ca Riser Cond Field Insp Well ID Vis Standing V Clear of W Measuring Split samp Maintenan Decontam Equipmen Redevelop	tion ndition ap & Lock dition ection sible Water Veeds g Point le with M nce Perfo ination N t Calibrat oment Ne	1DNR rmed lormal ion Norm eded n SAP	G G G G Yes Y	F F F F F F F F F F F F F F F F F F F	P P P N/A
Weather Conditions Water Level Start Water Level Finish Name (MEC Field Sam	11 10 W 10 5 19.4 pler): Rick Elgir	9/		Access Pad Condi Casing Condi Locking Candi Riser Condi Field Insperience Well ID Vistoria Standing Notes and Measuring Split samp Maintenand Decontame Equipment Redevelop Any deviate Sediment	tion ndition ap & Lock dition ection sible Water Veeds g Point le with M nce Perfo ination N t Calibrat oment Ne cions from Thickness	IDNR rmed lormal ion Norm eded n SAP s Checked	G G G G Yes Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	FFFFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	P P P P N/A
Weather Conditions Water Level Start Water Level Finish Name (MEC Field Sam) Sampler Signature	4	MW-	MW-	Access Pad Condi Casing Co Locking Ca Riser Cond Field Insp Well ID Vis Standing V Clear of W Measuring Split samp Maintenar Decontam Equipmen Redevelop Any deviat Sediment	tion ndition ap & Lock dition ection sible Vater eeds g Point le with M nce Perfo ination N t Calibrat ment Ne cions from Thickness	IDNR rmed lormal ion Norm eded n SAP s Checked	G G G G G Yes Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	F F F F E E E E E E E E E E E E E E E E	P P P N/A
Weather Conditions Water Level Start Water Level Finish Name (MEC Field Sam Sampler Signature Historical Data:	1/2 W W 9 5 9 6 5 9 6 5 9 6 5 9 6 5 9 6 5 9 6 5 9 6 5 9 6 5 9 6 6 6 6	9/		Access Pad Condi Casing Co Locking Ca Riser Cond Field Insp Well ID Vis Standing V Clear of W Measuring Split samp Maintenan Decontam Equipmen Redevelop Any deviat Sediment MW- 0304R 03	tion ndition ap & Lock dition ection sible Water Veeds g Point le with M nce Perfo ination N t Calibrat oment Ne cions from Thickness	IDNR rmed lormal ion Norm eded n SAP s Checked	G G G G Yes Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	FFFFEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	P P P P N/A
Weather Conditions Water Level Start Water Level Finish Name (MEC Field Sam) Sampler Signature Historical Data: Constituent	Units	MW- 0302R	MW- 0303R	Access Pad Condi Casing Condi Locking Candi Riser Condi Field Insp Well ID Vis Standing Volume Clear of Word Measuring Split samp Maintenan Decontam Equipmen Redevelop Any deviat Sediment MW- 0304R 03	tion ndition ap & Lock dition ection sible Water Geds Point le with M nce Perfo ination N t Calibrat ment Ne cions from Thickness	IDNR rmed lormal ion Norm eded n SAP s Checked MW- 0306R	G G G G G G Yes Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	F F F F F NW- 0308	P P P N/A
Weather Conditions Water Level Start Water Level Finish Name (MEC Field Sam) Sampler Signature Historical Data: Constituent pH	Units S.U.	MW- 0302R 6.47	MW- 0303R 	Access Pad Condi Casing Condi Locking Candi Riser Condi Field Insperior Well ID Vistoria Standing Notes of Wind Measuring Split samp Maintenan Decontam Equipmen Redevelop Any deviat Sediment MW- 0304R 03 6.62 1.08 0	tion ndition ap & Lock dition ection sible Water Veeds g Point le with M nce Perfo ination N t Calibrat ment Ne cions from Thickness	IDNR rmed lormal ion Norm eded n SAP s Checked MW- 0306R 6,54	G G G G G Yes Y Y Y Y MW- 0307 6.41	F F F F N N N N N N N N N N N N N N N N	P P P N/A
Water Level Start Water Level Start Water Level Finish Name (MEC Field Sam) Sampler Signature Historical Data: Constituent pH Specific Conductance Total Well Depth Average GW Depth	Units S.U. mS/cm ft ft	MW- 0302R 6.47 0.866 46.1 36.6	MW- 0303R 6.88 0.663 42.1 23.4	Access Pad Condi Casing Con Locking Ca Riser Cond Field Insp Well ID Vis Standing V Clear of W Measuring Split samp Maintenan Decontam Equipmen Redevelop Any deviat Sediment MW- 0304R 03 6.62 1.08 0 23.9 3 8.0 1	tion ndition ap & Lock dition ection sible Water Veeds g Point le with M nce Perfo ination N t Calibrat oment Ne cions from Thickness AW- 805R 5.81	MDNR rmed lormal ion Norm eded n SAP Checked MW- 0306R 6.54 1.36	G G G G G G Yes Y Y Y MW- 0307 6.41 1.04	F F F F N N N N N N N N N N N N N N N N	P P P P N/A
Weather Conditions Water Level Start Water Level Finish Name (MEC Field Sam) Sampler Signature Historical Data: Constituent pH Specific Conductance Total Well Depth	Units S.U. mS/cm ft	MW- 0302R 6.47 0.866 46.1	MW- 0303R 6.88 0.663 42.1	Access Pad Condi Casing Con Locking Ca Riser Cond Field Insp Well ID Vis Standing V Clear of W Measuring Split samp Maintenan Decontam Equipmen Redevelop Any deviat Sediment MW- 0304R 03 6.62 1.08 0 23.9 3 8.0 1	tion ndition ap & Lock dition ection sible Vater eeds Point le with M nce Perfo ination N t Calibrat ment Ne tions from Thickness AW- 305R 5.81 733	MDNR rmed lormal ion Norm eded n SAP s Checked MW- 0306R 6.54 1.36 69.3	G G G G G G Yes Y Y Y Y Y Y Y Y 1.04 67.1	F F F F N N N N N N N N N N N N N N N N	P P P N/A

L

(Min Purged Amount)

2.45

2.32

2.13

2.19

2.87

2.91

2.57

	Ast	eury :	Pard	2022 Fie	ld Sampling	g Log		A		
Facility:	Ftiko	huf (Permit #10	02703)		Monitoring	Well 4-Dig	it ID: <u>MV</u>	1-030)	
						le B			eld Blank	1
Purge In	formation:				Janny	A. S.	iiila Dapii	cate ri	eiu Dialik	j •
		: Dedicated Bla	adder Pump	with ¼ - ii	nch Diameter	Tubing				
					11.00	1				
		Actual Purg	e Volume R	emoved: _	1000	/	-	1	•	
Date / Ti	me Initiated:	5- (1) -2	2 @ /	1:40	Date / Time	e Complet	ed: <u>5-</u> (-22 @	y	
Well Pur	ged To Dryne	ss?: Y N		Gas D	etected? Y					
Purge Da	ata: 50 ml									
	200 ml			-						Other
	Purge	Cumulative			Specific	Dis	solved		TISA	
	Rate	Volume	Temp.	рН	Conductiv	24		ORP	. 0 0.4	Clarity,
Time	(mL/min)	()	(°C)	(SU)	(mS/cm	\ I		(MV)		Odor)
11:42	200	400	17.5	7.35	2121	6.	30	122.7	1.27	
44		800	17.4	7.21	2120	16.	.13	120,9	2.69	
46		1200	17.3	2.70	2110	1 6	.13	119.2	5.30	
48		1600	17.3	11	2121			118.3	-	
				1	acce			^		
			11		. Field	nenoction		Hood	Foir D	1000
			11:5	2				1		
Time san	npled	. /	11					//		P
		1/1			_		1	G	F	P
		Un					ock	G /	F	P
Weather	Conditions	(200			_			G/	F	Р
		0 Oc	1					Yes	No	
Waterle	vol Start	8.00	•					Y		
water Le	vei start	, 1				_		Y V		
		100	+					13	C.	
Water Le	vel Finish	1000				-		Y	NZ	
		(Y		N/A
				2	Decon	taminatio	n Normal		N	N/A
Name (M	EC Field Samp	oler): <u>Rick Elgir</u>	1 & Ryan Or	bals				rmal (%)	N	N/A
		1	119					(y)	(A)	
Sampler	Signaturo	//	1/					Y	//	
-					_ Sedim	ent mickii	ess Check	eu r		N/A
	का चर्चा ।		MW-	MW-	MW-	MW-	MW-	MW-	MW-	MW-
Constituen	t	Units	9302R	0303R	0304R	0305R				
рН		S.U.	6.47	6.88	6.62	6.81	6.54	6.41	6.76	7.05
	200 ml Purge Rate Volume Temp. pH Conductivity Dissolved Oxygen (mg/L) (MV) Odor)									
	Purge Data: 50 ml 200 ml									
							49.6	62.2	29.8	48.4
		ft	38.0	31.5	21.6	24.5	59.5	62.0	44.0	57.5
2 System V	olumes (est)		2.45	222	2 12	2.10	2.07	2.01	200	2.02

2.45

(Min Purged Amount)

2.32

2.13

2.19 2.87

2.91

2.83

4.0					_				
Alexander 1	ru to	Nd9	2022 Fiel	d Sampling	Log			11	
Facility: Full of	11 Permit #16	97031		Monitoring V	/ell /l-Digit	un·MW.	100 G	27	
raciity.	The processing of the	2703]	_	ivioriitoriiig v	Vell 4-Digit	. ID. IVIVOS	930		1
Purge Information:				Sampl	e K Bli	ind Duplicat	te Fie	ld Blank [<u> </u> .
Method of Well Purge:	Dedicated Bla	adder Pump	with ¼ - in	ch Diameter 1	Tubing				
			L.	1800	MA				
	Actual Purg			1000	14		_	-	
Date / Time Initiated:	5- (0) -2	2 @ /0	2:19	Date / Time	Complete	d: <u>5-</u> 1	0 -22 @		
Well Purged To Dryness	s?: Y /		Gas De	etected? Y /	(
Purge Data: 50 ml									
200 ml								7.1	Other
Purge	Cumulative			Specific		olved		(URA	(Color,
Rate (mL/min)	Volume	Temp.	pH (cu)	Conductivit	. 0	ygen	ORP		Clarity,
10.00	1 00	(°C)	(SU)	(mS/cm)	(m	ng/L)	(MV)	^	Odor)
13:31 200	600	1618	100	1911	9,	12/	36.9	7,	
120.	1000	16.4	1.20	1918	5.	07 1	34.7	4.2	
: 25	1400	16.2	7,20	1913	5	04 1.	51.7	3.6	
:21	12m	16.3	7.20	1914		03/	30.6	.7.2	
	1200	[11 . 1 .	1,00			,		0.00	
	19	:30		Access	spection		Good	<u>Fair</u> <u>I</u>	Poor P
Time sampled	10	100			ndition	1	G /	F	P
	1/1			_	Condition		G /	F	Р
Weather Conditions	401				g Cap & Lo ondition	ck \	G/	F	P P
weather conditions		ŕ			spection		Yes	No.	N/A
	797	(Visible		Yes	<u></u>	N/A
Water Level Start	1010				ng Water		Y		N/A
	18 2n				f Weeds ring Point			(N)	N/A N/A
Water Level Finish/	O.xlo				mple with	MDNR	V	A CO	N/A
- (nance Per		15	(I)	N/A
Name / NAEC Eigld Comm	laul. Dial. Elais	20 00	3		amination			N	N/A
Name (MEC Field Samp	ier): KICK EIRIE	Kyan tori	Dais		lopment N	ation Norm	al (v)	N N	N/A N/A
	11/1				viations fr		Y	N	N/A
Sampler Signature	11			Sedime	nt Thickne	ess Checked	Υ	N)	N/A
Historical Data:	7								
	1	MW-	MW-	MW-	MW-	MW-	MW-	MW-	MW-
pH pH	Units S.U.	0302R 6.47	0303R 6.88	0304R 6.62	0305R 6.81	0306R 6.54	0307 6.41	0308 6.76	0309 7.05
Specific Conductance	mS/cm	0.866	0.663	1.08	0.733	1.36	1.04	0.907	0.786
Total Well Depth	ft	46.1	42.1	23.9	34.7	69.3	67.1	58.9	74.0
Average GW Depth	ft	36.6	23.4	8.0	13.9	49.6	62.2	29.8	48.4
Pump Depth (est.)	ft	38.0	31.5	21.6	24.5	59.5	62.0	44.0	57.5
2 System Volumes (est) (Min Purged Amount)	L	2.45	2.32	2.13	2.19	2.87	2.91	2.57	2:83

Af	My L	I	2022 Fie	ld Sampling	g Log				
Facility: Fulton	LF (Permit #10			Monitoring '	Well 4-Digi	t ID: MW -	030	7	
-					ole Bli			eld Blank].
Purge Information: Method of Well Purge	Dedicated Bla	ndder Pumr	with ½ - i	nch Diameter	Tuhing				
				Don	m/				
	Actual Purg		emoved: _	(-00	ru		0	-	
Date / Time Initiated:	5- (0 -2	2 @ /	1.50	Date / Time	e Complete	ed: <u>5-</u>)-22 @		-+/
Well Purged To Drynes	ss?: Y /N		Gas D	etected? Y	IN) M	pld.	MA	08 a	NAST
Purge Data: 50 ml					0	rocci -	COL	199	Z
200 ml Purge Rate	Cumulative Volume	Temp.	pH	Specific Conductiv	ity Ox	solved tygen	ORP	Turb.	Other (Color, Clarity,
Time (mL/min)	(00	(°C)	(SU)	(mS/cm) (n	ng/L)	(MV)	4.2	Odor)
6 37 200	600	1611	6120	0271	7.	13 3		cex	
503	1000			M/S	-	A	1 N		
:57	1400	16.0	641	294	7 8	23 1	499	6.17	
:59	1800	1919	6.47	294	7 3.	901	44.1	407	
1			W L	- / (101		
		1 0	4	Field	Inspection		Good	Fair I	Poor
		(1)		Acces	S		G	F	Р
Time sampled	. /		<u> </u>	_	ondition	/	G	F	P P
	LAT				g Condition ng Cap & Lo	,	G	F	P P
Weather Conditions	(400	1			Condition		G/	F	Р
	1215	(Inspection		Yes	No	N/A
Water Level Start	V.(3)				D Visible ing Water		Y		N/A N/A
TV dter Level Stall	2/)			of Weeds		X	(2)	N/A
	5.50				uring Point				N/A
Water Level Finish	~				ample with enance Per		Y	(AL)	N/A
					enance Per Itamination		RZ	N	N/A N/A
Name (MEC Field Samp	oler): Rick Elgir	& Ryan Or	tbals		ment Calibi		nal (V)	N	N/A
	A				elopment I		(P)	Ah	N/A
Sampler Signature	18				eviations fr ent Thickne		Y d Y	/N	N/A N/A
Historical Data:	09			Sedilli	CIII IIIICKIII	ESS CHECKE	u r	O	N/A
		MW-	MW-	MW-	MW-	MW-	MW-	MW-	MW-
Constituent	Units	0302R	0303R	0304R	0305R	0306R	0307	0308	0309
pH Specific Conductance	S.U. mS/cm	0.47	6.88	6.62	6.81	6.54	6.41	6.76	7.05
Total Well Depth	ft	0.866 46.1	0.663	1.08 23.9	0.733 34.7	1.36 69.3	1.04	0.907 58.9	0.786 74.0
Average GW Depth	ft	36.6	23.4	8.0	13.9	49.6	62.2	29.8	48.4
Pump Depth (est.)	ft	38.0	31.5	21.6	24.5	59.5	62.0	44.0	57.5
2 System Volumes (est)	L	2.45	2.32	2.13	2.19	2.87	2.91	2.57	2.83
Min Durgod Amount			. 414	4.4.4	6.40	4.07	4.74		£ . 63. J

(Min Purged Amount)

APPENDIX 4

Analytical Results from Lab

2

3

4

6

8

10

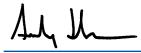
12

1,

ANALYTICAL REPORT

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-137991-1


Client Project/Site: Asbury Pond - EPA Sampling Event: Asbury Ash Pond

For:

eurofins 🔅

Midwest Environmental Consultants 2009 East McCarty Street Suite 2 Jefferson City, Missouri 65101

Attn: Anika Careaga

Authorized for release by: 5/26/2022 3:46:09 PM

Andy Johnson, Manager of Project Management (615)301-5045

Andy.Johnson@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	12
QC Sample Results	22
QC Association Summary	24
Chain of Custody	26
Receipt Chacklists	28

3

4

0

9

10

12

1:

Case Narrative

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-137991-1

Job ID: 180-137991-1

Laboratory: Eurofins Pittsburgh

Narrative

Job Narrative 180-137991-1

Comments

No additional comments.

Receipt

The samples were received on 5/12/2022 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

GC Semi VOA

Method 9056A: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-4, MW-5A, MW-6A, MW-7 Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Field Service / Mobile Lab

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

0

9

10

12

1:

Definitions/Glossary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-137991-1

Qualifiers

	_	_	_		_
ш	О		~	/1	r
п	_	L	•	"	u

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Accreditation/Certification Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-137991-1

Laboratory: Eurofins Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-22
California	State	2891	04-30-22 *
Connecticut	State	PH-0688	09-30-22
Florida	NELAP	E871008	06-30-22
Georgia	State	PA 02-00416	04-30-23
Illinois	NELAP	004375	06-30-22
Kansas	NELAP	E-10350	03-31-23
Kentucky (UST)	State	162013	04-30-22 *
Kentucky (WW)	State	KY98043	12-31-22
Louisiana	NELAP	04041	06-30-22
Maine	State	PA00164	03-06-24
Minnesota	NELAP	042-999-482	12-31-22
Nevada	State	PA00164	08-31-22
New Hampshire	NELAP	2030	04-04-23
New Jersey	NELAP	PA005	06-30-23
New York	NELAP	11182	04-01-23
North Carolina (WW/SW)	State	434	12-31-22
North Dakota	State	R-227	04-30-22 *
Oregon	NELAP	PA-2151	02-07-23
Pennsylvania	NELAP	02-00416	04-30-23
Rhode Island	State	LAO00362	12-31-21 *
South Carolina	State	89014	06-30-22
Texas	NELAP	T104704528	03-31-23
USDA	Federal	P-Soil-01	06-26-22
USDA	US Federal Programs	P330-16-00211	06-26-22
Utah	NELAP	PA001462019-8	05-31-22
Virginia	NELAP	10043	09-15-22
West Virginia DEP	State	142	01-31-23
Wisconsin	State	998027800	08-31-22

6

8

9

10

12

1

 $^{^{\}star}\, \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Sample Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-137991-1	MW-2	Water	05/10/22 08:55	05/12/22 09:30
180-137991-2	MW-3	Water	05/10/22 13:35	05/12/22 09:30
180-137991-3	MW-4	Water	05/10/22 09:35	05/12/22 09:30
180-137991-4	MW-5	Water	05/10/22 10:10	05/12/22 09:30
180-137991-5	MW-5A	Water	05/10/22 11:15	05/12/22 09:30
180-137991-6	MW-6	Water	05/10/22 11:50	05/12/22 09:30
180-137991-7	MW-6A	Water	05/10/22 12:30	05/12/22 09:30
180-137991-8	MW-7	Water	05/10/22 13:00	05/12/22 09:30
180-137991-9	Duplicate	Water	05/10/22 10:35	05/12/22 09:30
180-137991-10	Field Blank	Water	05/10/22 10:15	05/12/22 09:30

Job ID: 180-137991-1

5

6

0

9

10

11

Method Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-137991-1

Method	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	TAL PIT
EPA 6020A	Metals (ICP/MS)	SW846	TAL PIT
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PIT
Field Sampling	Field Sampling	EPA	TAL PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-2 Lab Sample ID: 180-137991-1 Date Collected: 05/10/22 08:55

Matrix: Water

Job ID: 180-137991-1

Date Received: 05/12/22 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		1			399914	05/25/22 16:40	LWM	TAL PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	399248	05/19/22 09:00	EMR	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: NEMO		1			399556	05/20/22 17:22	RSK	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	398707	05/13/22 12:11	JCR	TAL PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			398962	05/10/22 09:55	FDS	TAL PIT

Lab Sample ID: 180-137991-2 **Client Sample ID: MW-3** Date Collected: 05/10/22 13:35 **Matrix: Water**

Date Received: 05/12/22 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		1			399914	05/25/22 17:39	LWM	TAL PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	399248	05/19/22 09:00	EMR	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: NEMO		1			399556	05/20/22 17:24	RSK	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	398707	05/13/22 12:11	JCR	TAL PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			398962	05/10/22 14:35	FDS	TAL PIT

Client Sample ID: MW-4 Lab Sample ID: 180-137991-3 Date Collected: 05/10/22 09:35 **Matrix: Water**

Date Received: 05/12/22 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			399914	05/25/22 18:09	LWM	TAL PIT
	Instrumen	t ID: CHICS2100B								
Total/NA	Analysis	EPA 9056A		10			399914	05/25/22 18:24	LWM	TAL PIT
	Instrumen	t ID: CHICS2100B								
Total Recoverable	Prep	3005A			25 mL	25 mL	399248	05/19/22 09:00	EMR	TAL PIT
Total Recoverable	Analysis	EPA 6020A		1			399556	05/20/22 17:27	RSK	TAL PIT
	Instrumen	t ID: NEMO								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	398707	05/13/22 12:11	JCR	TAL PIT
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	Field Sampling		1			398962	05/10/22 10:35	FDS	TAL PIT
	Instrumen	t ID: NOEQUIP								

Eurofins Pittsburgh

5/26/2022

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-5 Lab Sample ID: 180-137991-4 Date Collected: 05/10/22 10:10

Matrix: Water

Job ID: 180-137991-1

Date Received: 05/12/22 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	EPA 9056A ID: CHICS2100B		1			399914	05/25/22 20:08	LWM	TAL PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	399248	05/19/22 09:00	EMR	TAL PIT
Total Recoverable	Analysis Instrument	EPA 6020A ID: NEMO		1			399556	05/20/22 17:29	RSK	TAL PIT
Total/NA	Analysis Instrument	SM 2540C ID: NOEQUIP		1	100 mL	100 mL	398707	05/13/22 12:11	JCR	TAL PIT
Total/NA	Analysis Instrument	Field Sampling		1			398962	05/10/22 11:10	FDS	TAL PIT

Lab Sample ID: 180-137991-5 **Client Sample ID: MW-5A** Date Collected: 05/10/22 11:15 **Matrix: Water**

Date Received: 05/12/22 09:30

Date Received: 05/12/22 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	EPA 9056A t ID: CHICS2100B		2.5			399914	05/25/22 20:38	LWM	TAL PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	399248	05/19/22 09:00	EMR	TAL PIT
Total Recoverable	Analysis Instrument	EPA 6020A t ID: NEMO		1			399556	05/20/22 17:37	RSK	TAL PIT
Total/NA	Analysis Instrument	SM 2540C t ID: NOEQUIP		1	50 mL	100 mL	398707	05/13/22 12:11	JCR	TAL PIT
Total/NA	Analysis Instrument	Field Sampling		1			398962	05/10/22 12:15	FDS	TAL PIT

Client Sample ID: MW-6 Lab Sample ID: 180-137991-6 Date Collected: 05/10/22 11:50 **Matrix: Water**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		1			399914	05/25/22 21:07	LWM	TAL PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	399248	05/19/22 09:00	EMR	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: NEMO		1			399556	05/20/22 17:39	RSK	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	398707	05/13/22 12:11	JCR	TAL PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			398962	05/10/22 12:50	FDS	TAL PIT

Eurofins Pittsburgh

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-6A Lab Sample ID: 180-137991-7 Date Collected: 05/10/22 12:30

Matrix: Water

Job ID: 180-137991-1

Date Received: 05/12/22 09:30

Prep Type Total/NA	Type Analysis	Batch Method EPA 9056A	Run	Factor 1	Initial Amount	Final Amount	Batch Number 399914	Prepared or Analyzed 05/25/22 21:37	Analyst LWM	Lab TAL PIT
Total/NA	Analysis	EPA 9056A t ID: CHICS2100B		10			399914	05/25/22 21:52	LWM	TAL PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A EPA 6020A It ID: NEMO		1	25 mL	25 mL	399248 399556	05/19/22 09:00 05/20/22 17:42		TAL PIT TAL PIT
Total/NA	Analysis Instrumen	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	398707	05/13/22 12:11	JCR	TAL PIT
Total/NA	Analysis Instrumen	Field Sampling		1			398962	05/10/22 13:30	FDS	TAL PIT

Client Sample ID: MW-7 Lab Sample ID: 180-137991-8

Date Collected: 05/10/22 13:00 **Matrix: Water**

Date Received: 05/12/22 09:30

Bron Tuno	Batch	Batch Method	Run	Dil	Initial	Final	Batch Number	Prepared or Analyzed	Analyst	Lab
Prep Type Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B	Kun	Factor 2.5	Amount	Amount	399914	05/25/22 22:07	Analyst LWM	TAL PIT
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		25			399914	05/25/22 22:22	LWM	TAL PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A EPA 6020A t ID: NEMO		1	25 mL	25 mL	399248 399556	05/19/22 09:00 05/20/22 17:44		TAL PIT TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	50 mL	100 mL	398707	05/13/22 12:11	JCR	TAL PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			398962	05/10/22 14:00	FDS	TAL PIT

Client Sample ID: Duplicate Lab Sample ID: 180-137991-9 Date Collected: 05/10/22 10:35 **Matrix: Water**

Date Received: 05/12/22 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		1			399914	05/25/22 23:06	LWM	TAL PIT
Total Recoverable	Prep	3005A			25 mL	25 mL	399248	05/19/22 09:00	EMR	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: NEMO		1			399556	05/20/22 17:47	RSK	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	398707	05/13/22 12:11	JCR	TAL PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			398962	05/10/22 11:35	FDS	TAL PIT

Eurofins Pittsburgh

Page 10 of 28

5/26/2022

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: Field Blank Lab Sample ID: 180-137991-10

Date Collected: 05/10/22 10:15 Matrix: Water

Date Received: 05/12/22 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			399914	05/25/22 23:36	LWM	TAL PIT
	Instrumer	t ID: CHICS2100B								
Total Recoverable	Prep	3005A			25 mL	25 mL	399248	05/19/22 09:00	EMR	TAL PIT
Total Recoverable	Analysis	EPA 6020A		1			399556	05/20/22 17:50	RSK	TAL PIT
	Instrumer	t ID: NEMO								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	398707	05/13/22 12:11	JCR	TAL PIT
	Instrumer	it ID: NOEQUIP								

Laboratory References:

TAL PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: TAL PIT

Batch Type: Prep

EMR = Elizabeth Rarick

Batch Type: Analysis

FDS = Sampler Field

JCR = Jessica Rodgers

LWM = Larry Matko

RSK = Robert Kurtz

Job ID: 180-137991-1

3

J

E

6

8

12

1

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-2 Lab Sample ID: 180-137991-1

Date Collected: 05/10/22 08:55 Date Received: 05/12/22 09:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	95		1.0	0.71	mg/L			05/25/22 16:40	1
Fluoride	0.34		0.10	0.026	mg/L			05/25/22 16:40	1
Sulfate	46		1.0	0.76	mg/L			05/25/22 16:40	1
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.16		0.080	0.060	mg/L		05/19/22 09:00	05/20/22 17:22	1
Calcium	38		0.50	0.13	mg/L		05/19/22 09:00	05/20/22 17:22	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	390		10	10	mg/L			05/13/22 12:11	1
Method: Field Sampling - F	ield Sampling								
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.42				SU			05/10/22 09:55	

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-3 Lab Sample ID: 180-137991-2

Date Collected: 05/10/22 13:35 Date Received: 05/12/22 09:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	55		1.0	0.71	mg/L			05/25/22 17:39	1
Fluoride	0.16		0.10	0.026	mg/L			05/25/22 17:39	1
Sulfate	420		1.0	0.76	mg/L			05/25/22 17:39	1
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.079	J	0.080	0.060	mg/L		05/19/22 09:00	05/20/22 17:24	1
Calcium	97		0.50	0.13	mg/L		05/19/22 09:00	05/20/22 17:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	880		10	10	mg/L			05/13/22 12:11	1
Method: Field Sampling - F	ield Sampling								
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	5.82				SU			05/10/22 14:35	1

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Lab Sample ID: 180-137991-3 Client Sample ID: MW-4

Date Collected: 05/10/22 09:35 Date Received: 05/12/22 09:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	74		1.0	0.71	mg/L			05/25/22 18:09	1
Fluoride	0.12		0.10	0.026	mg/L			05/25/22 18:09	1
Sulfate	830		10	7.6	mg/L			05/25/22 18:24	10
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.17		0.080	0.060	mg/L		05/19/22 09:00	05/20/22 17:27	1
Calcium	240		0.50	0.13	mg/L		05/19/22 09:00	05/20/22 17:27	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1800		10	10	mg/L			05/13/22 12:11	1
Method: Field Sampling - F	ield Sampling								
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.48				SU			05/10/22 10:35	

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Lab Sample ID: 180-137991-4 **Client Sample ID: MW-5**

Date Collected: 05/10/22 10:10 Date Received: 05/12/22 09:30

Matrix:	Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.4		1.0	0.71	mg/L			05/25/22 20:08	1
Fluoride	0.25		0.10	0.026	mg/L			05/25/22 20:08	1
Sulfate	130		1.0	0.76	mg/L			05/25/22 20:08	1
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.32		0.080	0.060	mg/L		05/19/22 09:00	05/20/22 17:29	1
Calcium	98		0.50	0.13	mg/L		05/19/22 09:00	05/20/22 17:29	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	570		10	10	mg/L			05/13/22 12:11	1
Method: Field Sampling - F	ield Sampling								
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.32			,	SU			05/10/22 11:10	1

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Lab Sample ID: 180-137991-5 **Client Sample ID: MW-5A**

Date Collected: 05/10/22 11:15 Date Received: 05/12/22 09:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	130		2.5	1.8	mg/L			05/25/22 20:38	2.5
Fluoride	0.25		0.25	0.065	mg/L			05/25/22 20:38	2.5
Sulfate	1500		2.5	1.9	mg/L			05/25/22 20:38	2.5
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1.7		0.080	0.060	mg/L		05/19/22 09:00	05/20/22 17:37	1
Calcium	330		0.50	0.13	mg/L		05/19/22 09:00	05/20/22 17:37	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2900		20	20	mg/L			05/13/22 12:11	1
Method: Field Sampling - F	ield Sampling								
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.79				SU			05/10/22 12:15	

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Lab Sample ID: 180-137991-6 **Client Sample ID: MW-6**

Date Collected: 05/10/22 11:50 Date Received: 05/12/22 09:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	15		1.0	0.71	mg/L			05/25/22 21:07	1
Fluoride	0.19		0.10	0.026	mg/L			05/25/22 21:07	1
Sulfate	850		1.0	0.76	mg/L			05/25/22 21:07	1
- Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.39		0.080	0.060	mg/L		05/19/22 09:00	05/20/22 17:39	1
Calcium	240		0.50	0.13	mg/L		05/19/22 09:00	05/20/22 17:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1800		10	10	mg/L			05/13/22 12:11	1
Method: Field Sampling - F	ield Sampling								
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.30				SU			05/10/22 12:50	

Client: Midwest Environmental Consultants

Job ID: 180-137991-1

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-6A Lab Sample ID: 180-137991-7

Date Collected: 05/10/22 12:30

Matrix: Water

Date Received: 05/10/22 12:30 Matr

Method: EPA 9056A - Anion	s, Ion Chroma	atography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	20		1.0	0.71	mg/L			05/25/22 21:37	1
Fluoride	0.28		0.10	0.026	mg/L			05/25/22 21:37	1
Sulfate	800		10	7.6	mg/L			05/25/22 21:52	10
- Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.46		0.080	0.060	mg/L		05/19/22 09:00	05/20/22 17:42	1
Calcium	180		0.50	0.13	mg/L		05/19/22 09:00	05/20/22 17:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1500		10	10	mg/L			05/13/22 12:11	1
Method: Field Sampling - F	ield Sampling								
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.20				SU			05/10/22 13:30	1

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-7 Lab Sample ID: 180-137991-8

Date Collected: 05/10/22 13:00 Date Received: 05/12/22 09:30

Matrix: Water

Job ID: 180-137991-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	35		2.5	1.8	mg/L			05/25/22 22:07	2.5
Fluoride	0.17	J	0.25	0.065	mg/L			05/25/22 22:07	2.5
Sulfate	1700		25	19	mg/L			05/25/22 22:22	25
- Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.29		0.080	0.060	mg/L		05/19/22 09:00	05/20/22 17:44	1
Calcium	480		0.50	0.13	mg/L		05/19/22 09:00	05/20/22 17:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2800		20	20	mg/L			05/13/22 12:11	1
- Method: Field Sampling - F	ield Sampling								
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.47				SU			05/10/22 14:00	

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: Duplicate Lab Sample ID: 180-137991-9

Date Collected: 05/10/22 10:35 Matrix: Water

Date Received: 05/12/22 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.6		1.0	0.71	mg/L			05/25/22 23:06	1
Fluoride	0.29		0.10	0.026	mg/L			05/25/22 23:06	1
Sulfate	120		1.0	0.76	mg/L			05/25/22 23:06	1
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.32		0.080	0.060	mg/L		05/19/22 09:00	05/20/22 17:47	1
Calcium	97		0.50	0.13	mg/L		05/19/22 09:00	05/20/22 17:47	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	580		10	10	mg/L			05/13/22 12:11	1
Method: Field Sampling - F	ield Sampling								
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.32				SU			05/10/22 11:35	

Job ID: 180-137991-1

3

5

6

8

9

10

11

12

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: Field Blank Lab Sample ID: 180-137991-10

Date Collected: 05/10/22 10:15

Matrix: Water Date Received: 05/12/22 09:30

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.2		1.0	0.71	mg/L			05/25/22 23:36	1
Fluoride	0.10		0.10	0.026	mg/L			05/25/22 23:36	1
Sulfate	ND		1.0	0.76	mg/L			05/25/22 23:36	1
Method: EPA 6020A - Meta Analyte	Is (ICP/MS) - Tot Result (able RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result		RL			D			Dil Fac
Analyte Boron	Result 0		RL 0.080	0.060	mg/L	<u>D</u>	05/19/22 09:00	05/20/22 17:50	Dil Fac
Analyte Boron Calcium	Result		RL	0.060		<u>D</u>		05/20/22 17:50	Dil Fac
Analyte Boron Calcium	Result 0		RL 0.080	0.060	mg/L	<u>D</u>	05/19/22 09:00	05/20/22 17:50	Dil Fac
Analyte Boron	Result 0	Qualifier	RL 0.080	0.060	mg/L mg/L	<u>D</u> D	05/19/22 09:00	05/20/22 17:50	Dil Fac

5/26/2022

Job ID: 180-137991-1

Job ID: 180-137991-1

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Method: EPA 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 180-399914/7

Matrix: Water

Analysis Batch: 399914

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Analy	e Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlori	le ND	1.0	0.71	mg/L			05/25/22 15:20	1
Fluorio	e ND	0.10	0.026	mg/L			05/25/22 15:20	1
Sulfate	ND ND	1.0	0.76	mg/L			05/25/22 15:20	1

Lab Sample ID: LCS 180-399914/6

Matrix: Water

Analysis Batch: 399914

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: MW-2

Prep Type: Total/NA

7 mary old Datom Good 1	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	45.8		mg/L		92	80 - 120	
Fluoride	2.50	2.34		mg/L		94	80 - 120	
Sulfate	50.0	46.1		mg/L		92	80 - 120	

Lab Sample ID: 180-137991-1 MS

Client Sample ID: MW-2 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 399914

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	100		250	318		mg/L		87	80 - 120	
Fluoride	0.43	J	12.5	11.8		mg/L		91	80 - 120	
Sulfate	50		250	265		mg/L		86	80 - 120	

Lab Sample ID: 180-137991-1 MSD

Matrix: Water

Analysis Batch: 399914									۰			
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	100		250	326		mg/L		90	80 - 120	2	15	
Fluoride	0.43	J	12.5	12.3		mg/L		95	80 - 120	4	15	
Sulfate	50		250	277		mg/L		91	80 - 120	4	15	

Method: EPA 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-399248/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 399556 Prep Batch: 399248 MB MB

Analyte	Result Q	Qualitier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	ND	0.080	0.060	mg/L		05/19/22 09:00	05/20/22 15:38	1
Calcium	ND	0.50	0.13	mg/L		05/19/22 09:00	05/20/22 15:38	1

Lab Sample ID: LCS 180-399248/2-A **Client Sample ID: Lab Control Sample**

Analysis Batch: 399556

Matrix: Water

Prep Batch: 399248 LCS LCS Spike %Rec Added Result Qualifier Unit Analyte D %Rec Limits Boron 1.25 1.33 mg/L 107 80 - 120 Calcium 25.0 28.3 mg/L 113 80 - 120

Eurofins Pittsburgh

Prep Type: Total Recoverable

QC Sample Results

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-137991-1

Prep Type: Total/NA

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-398707/2 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 398707

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac **Prepared** Total Dissolved Solids 10 05/13/22 12:11 ND 10 mg/L

Lab Sample ID: LCS 180-398707/1 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 398707

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 251 240 85 - 115 mg/L 96

Client Sample ID: MW-2 Lab Sample ID: 180-137991-1 DU Prep Type: Total/NA

Matrix: Water

Analysis Batch: 398707

Sample Sample DU DU RPD Result Qualifier Analyte Result Qualifier RPD Limit Unit Total Dissolved Solids 390 373 10 mg/L

QC Association Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-137991-1

HPLC/IC

Analysis Batch: 399914

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-137991-1	MW-2	Total/NA	Water	EPA 9056A	
180-137991-2	MW-3	Total/NA	Water	EPA 9056A	
180-137991-3	MW-4	Total/NA	Water	EPA 9056A	
180-137991-3	MW-4	Total/NA	Water	EPA 9056A	
180-137991-4	MW-5	Total/NA	Water	EPA 9056A	
180-137991-5	MW-5A	Total/NA	Water	EPA 9056A	
180-137991-6	MW-6	Total/NA	Water	EPA 9056A	
180-137991-7	MW-6A	Total/NA	Water	EPA 9056A	
180-137991-7	MW-6A	Total/NA	Water	EPA 9056A	
180-137991-8	MW-7	Total/NA	Water	EPA 9056A	
180-137991-8	MW-7	Total/NA	Water	EPA 9056A	
180-137991-9	Duplicate	Total/NA	Water	EPA 9056A	
180-137991-10	Field Blank	Total/NA	Water	EPA 9056A	
MB 180-399914/7	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-399914/6	Lab Control Sample	Total/NA	Water	EPA 9056A	
180-137991-1 MS	MW-2	Total/NA	Water	EPA 9056A	
180-137991-1 MSD	MW-2	Total/NA	Water	EPA 9056A	

Metals

Prep Batch: 399248

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-137991-1	MW-2	Total Recoverable	Water	3005A	
180-137991-2	MW-3	Total Recoverable	Water	3005A	
180-137991-3	MW-4	Total Recoverable	Water	3005A	
180-137991-4	MW-5	Total Recoverable	Water	3005A	
180-137991-5	MW-5A	Total Recoverable	Water	3005A	
180-137991-6	MW-6	Total Recoverable	Water	3005A	
180-137991-7	MW-6A	Total Recoverable	Water	3005A	
180-137991-8	MW-7	Total Recoverable	Water	3005A	
180-137991-9	Duplicate	Total Recoverable	Water	3005A	
180-137991-10	Field Blank	Total Recoverable	Water	3005A	
MB 180-399248/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-399248/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 399556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-137991-1	MW-2	Total Recoverable	Water	EPA 6020A	399248
180-137991-2	MW-3	Total Recoverable	Water	EPA 6020A	399248
180-137991-3	MW-4	Total Recoverable	Water	EPA 6020A	399248
180-137991-4	MW-5	Total Recoverable	Water	EPA 6020A	399248
180-137991-5	MW-5A	Total Recoverable	Water	EPA 6020A	399248
180-137991-6	MW-6	Total Recoverable	Water	EPA 6020A	399248
180-137991-7	MW-6A	Total Recoverable	Water	EPA 6020A	399248
180-137991-8	MW-7	Total Recoverable	Water	EPA 6020A	399248
180-137991-9	Duplicate	Total Recoverable	Water	EPA 6020A	399248
180-137991-10	Field Blank	Total Recoverable	Water	EPA 6020A	399248
MB 180-399248/1-A	Method Blank	Total Recoverable	Water	EPA 6020A	399248
LCS 180-399248/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020A	399248

Eurofins Pittsburgh

Page 24 of 28

2

5

7

9

11

12

QC Association Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-137991-1

General Chemistry

Analysis Batch: 398707

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-137991-1	MW-2	Total/NA	Water	SM 2540C	
180-137991-2	MW-3	Total/NA	Water	SM 2540C	
180-137991-3	MW-4	Total/NA	Water	SM 2540C	
180-137991-4	MW-5	Total/NA	Water	SM 2540C	
180-137991-5	MW-5A	Total/NA	Water	SM 2540C	
180-137991-6	MW-6	Total/NA	Water	SM 2540C	
180-137991-7	MW-6A	Total/NA	Water	SM 2540C	
180-137991-8	MW-7	Total/NA	Water	SM 2540C	
180-137991-9	Duplicate	Total/NA	Water	SM 2540C	
180-137991-10	Field Blank	Total/NA	Water	SM 2540C	
MB 180-398707/2	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-398707/1	Lab Control Sample	Total/NA	Water	SM 2540C	
180-137991-1 DU	MW-2	Total/NA	Water	SM 2540C	

Field Service / Mobile Lab

Analysis Batch: 398962

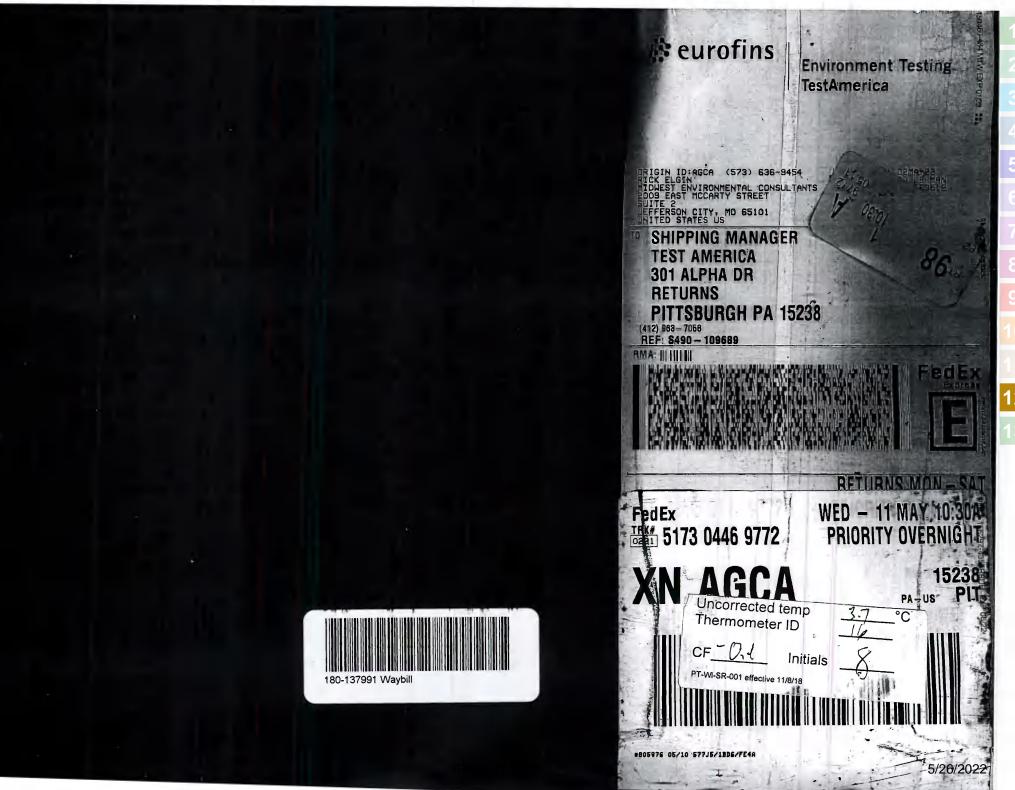
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-137991-1	MW-2	Total/NA	Water	Field Sampling	
180-137991-2	MW-3	Total/NA	Water	Field Sampling	
180-137991-3	MW-4	Total/NA	Water	Field Sampling	
180-137991-4	MW-5	Total/NA	Water	Field Sampling	
180-137991-5	MW-5A	Total/NA	Water	Field Sampling	
180-137991-6	MW-6	Total/NA	Water	Field Sampling	
180-137991-7	MW-6A	Total/NA	Water	Field Sampling	
180-137991-8	MW-7	Total/NA	Water	Field Sampling	
180-137991-9	Duplicate	Total/NA	Water	Field Sampling	

6

8

9

11


12

of containers	F - MeOH G - Amchlor H - Ascorbic I - Ice J - DI Water K - EDTA L - EDA Other:	R - Na2S2O3 S - H2SO4 Acid T - TSP Dodecahydrate U - Acetone V - MCAA W - ph 4-5 Z - other (specify)
Total Number of containers	Spec	cial Instructions/Note:
X		
	Field pH:	6042
	Field pH:	5.82
	Field pH:	6.48
	Field pH:	7,32
	Field pH:	6.79
	Field pH:	7,30
	Field pH:	7,20
	Field pH:	6.47
	Field pH:	7:32
	Field pH:	,

TestAmerica

Chain of Custody Record

sampler:			Lab Joh	рм: nson, A	Andy			Carrier Tracking No(s):		COC No: 490-52767-15725.1 Page: Page 1 of 1		
lient Contact: Anika Careaga	Phone:					on@e	urofinset.	com				
ompany: //dwest Environmental Consultants								Analysis R	Requested		Job#:	
ddress: 009 East McCarty Street Suite 2	Due Date Request	ed:				П	T I				Preservation Codes:	
ity:	TAT Requested (da	ays):		-	11	Н		111			A - HCL M - Hexane B - NaOH N - None	
efferson City tate, Zip:	_					П					C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S	
AO, 65101 hone:	PO #					ا و ا					E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3	
73-636-9454(Tel)	PO#: Purchase Order	not require	d		<u>6</u>	Sulfate	sp				G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecah	
nail: Careaga@mecpc.com	WO #:				Sample (Yes or No)		Solids		1:	90	I - Ice U - Acetone J - DI Water V - MCAA	
oject Name: sbury Pond - EPA	Project #: 49010011						d Bo	1 B	80-1	containers	K - EDTA W - ph 4-5 L - EDA Z - other (specify	
te:	SSOW#:		_	-	ald m		Dissolved um and Bo		3799		Other:	
				-	d Sa	Chloride,	Total Dis		91 C	er of		
			Sample Type	Matrix (w=water,	iltere m MS				hain	Number		
	1	Sample	(C=comp	S=solid, O=waste/oil, BT=Tissue, A=Air	eld F	9056A	2540C 6020A		of C	Total		
ample Identification	Sample Date	Time		tion Code:		N N	N D		Custody		Special Instructions/Not	
W-2	3+10-22	8,55	G	111	ÍŤ	X	XV		- dy		Field pH: 6042	
W-3	1	1:35		i	H	1	FI				Field pH: 5,82	
W-4		9:35			T	Π					Field pH: 6.48	
W-5		10:10			H	Ш	11 11				Field pH: 7,32	
W-5A		11:15		1			1111		1111		Field pH: 6.79	
W-6		11:50			TT	111					Field pH: 7,30	
W-6A	+	12:30									Field pH: 7,20	
W-7 (M. DASI)		1:00		1	H	Н					Field pH: 6.47	
uplicate @ MW-5		10:35		1		111					Field pH: 7:32	
ield Blank	+ +	10:15	M	4	H	W	VB				Field pH:	
Sid Sidilik	2	10.13	W	¥	+					++		
ossible Hazard Identification	V V				Sa	mple	Disposal	(A fee may be	e assessed if samples a	re retain	ed longer than 1 month)	
Non-Hazard Flammable Skin Irritant P	oison B Unkno	wn \square_R	adiological			$\square_{\it Re}$	turn To C	lient	Disposal By Lab	Arch	ive For Months	
eliverable Requested: I, II, III, IV, Other (specify)					Sp	ecial Ir	struction	s/QC Requiren	nents: 6020A/6010C - Sb	,As,Ba,B	e,B,Cd,Ca,Cr,Co,Pb,,Mo, Li	
mpty Kit Relinquished by:		Date:			Time:	-		,,	Method of Shipment:		111	
elinquished by:	Pale fine:	2 4	(100)	Company		Receiv	ed by:	per	S Pate/Time	-21	400 Prot	
elinquished by:	Date/Time:			Company		Receiv	9 by	- (Date/Time	rln	Company	
elinquished by:	Date/Time:			Company		Receiv	ed by:		Date/Time	:	Company	
Custody Seals Intact: Custody Seal No.:							()					

Client: Midwest Environmental Consultants

Job Number: 180-137991-1

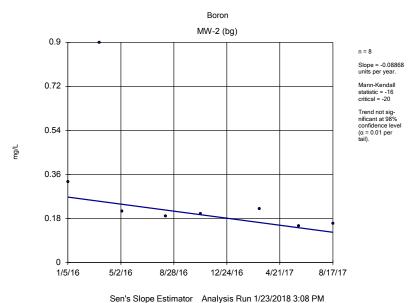
Login Number: 137991 List Source: Eurofins Pittsburgh

List Number: 1

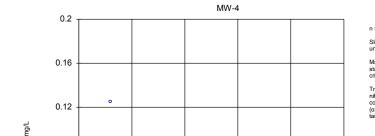
Creator: Abernathy, Eric L

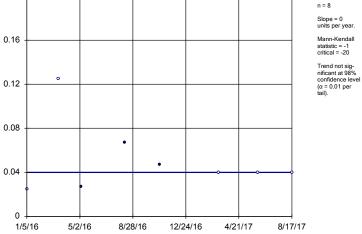
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX 5

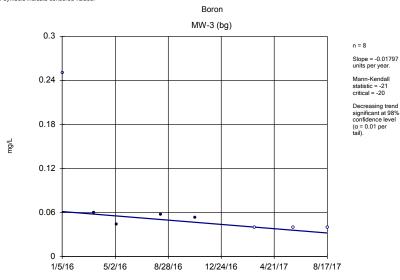

Statistical Analysis

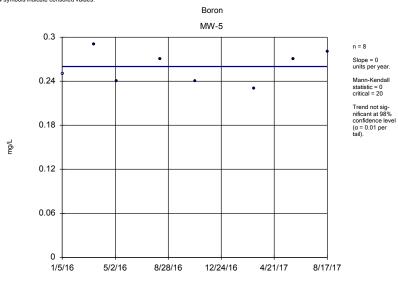
Sanitas[™] Output – Background


Trending Analysis


Hollow symbols indicate censored values.

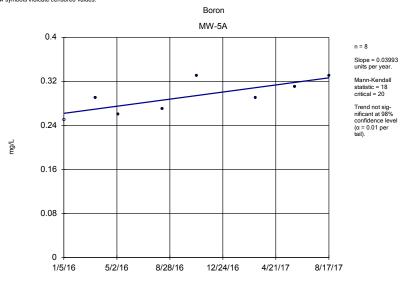
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Boron


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

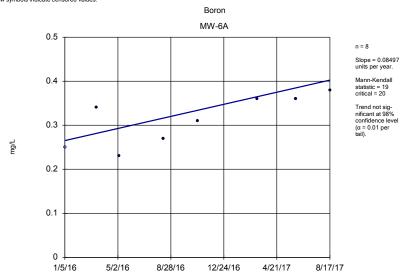
Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

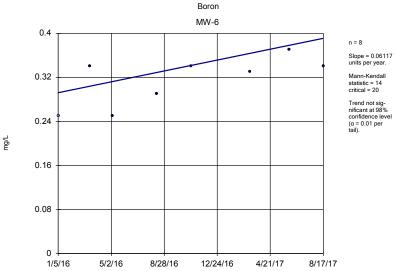

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

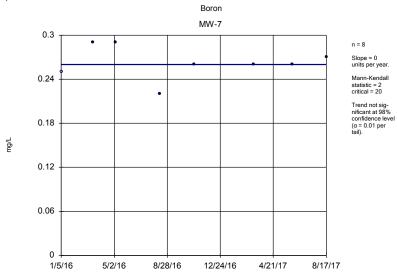
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

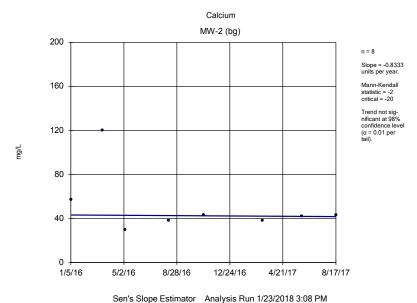
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

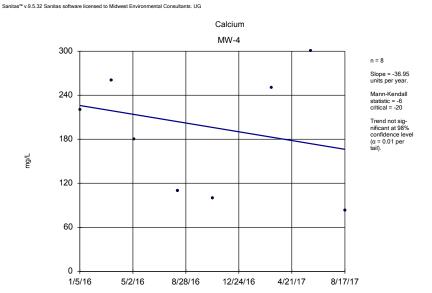
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


 $Sanitas \ ^{w}v.9.5.32\ Sanitas\ software\ licensed\ to\ Midwest\ Environmental\ Consultants.\ UG\ Hollow\ symbols\ indicate\ censored\ values.$

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

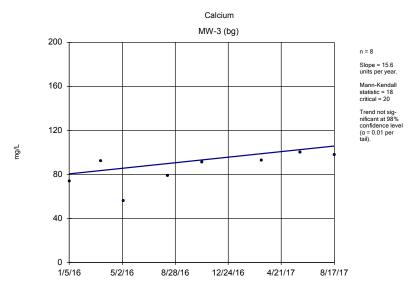

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas $^{\text{™}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

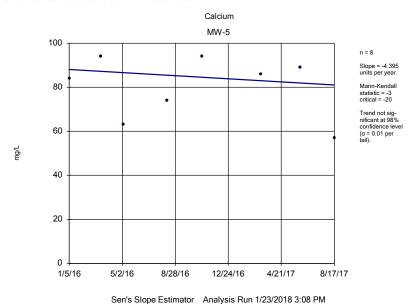


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

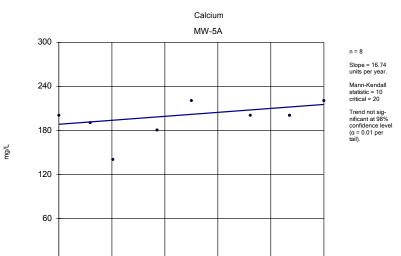
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

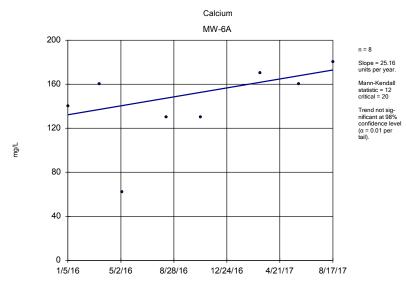
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

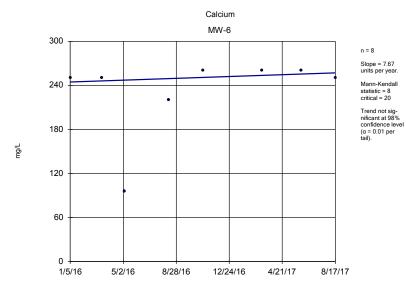
8/28/16

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

12/24/16

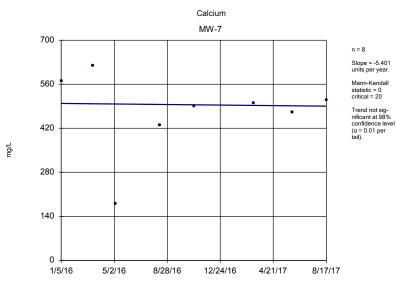

4/21/17

8/17/17

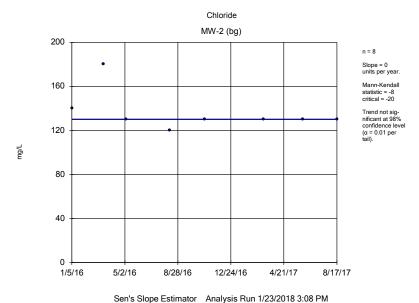

1/5/16

5/2/16

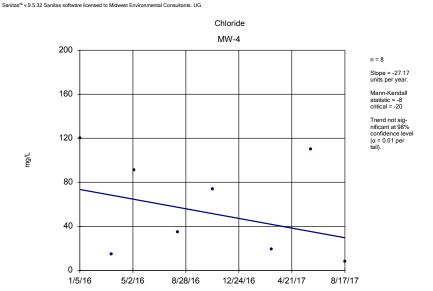
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

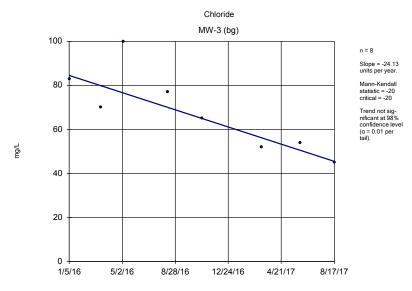

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

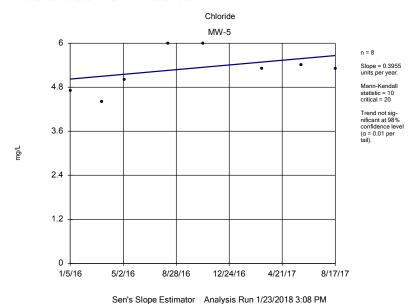


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

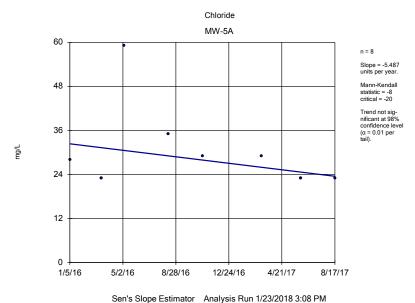
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



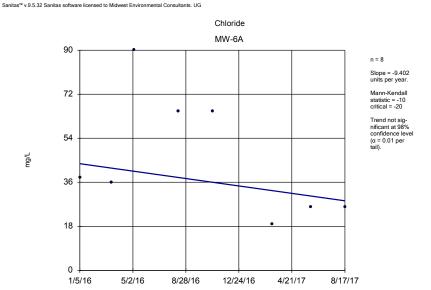
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

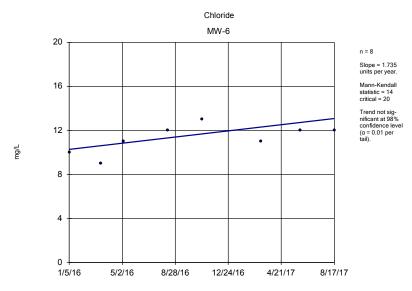
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



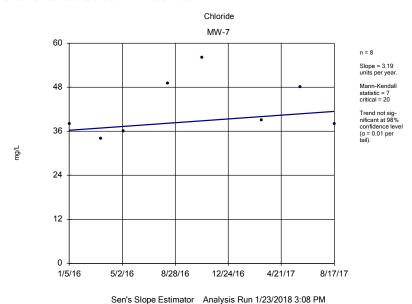
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

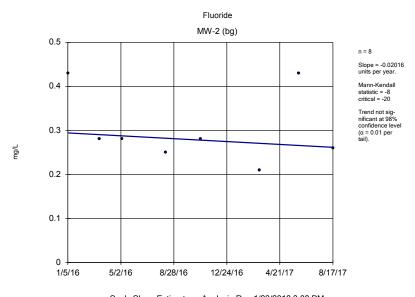
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

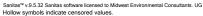

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

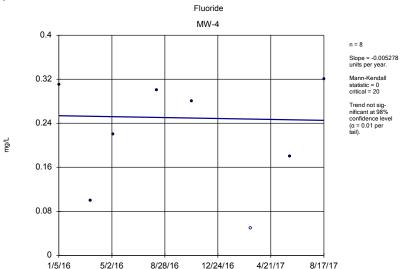
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

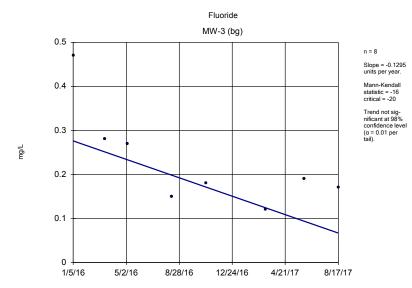


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

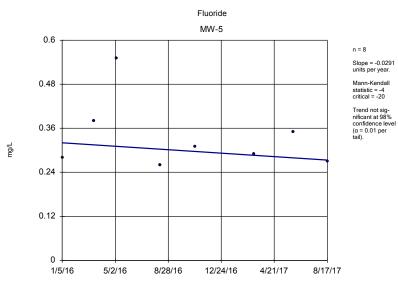
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



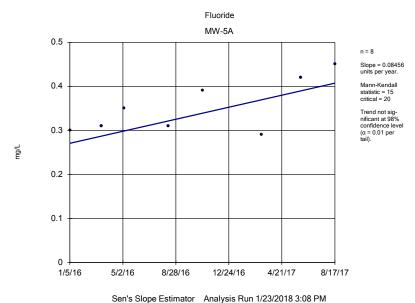

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

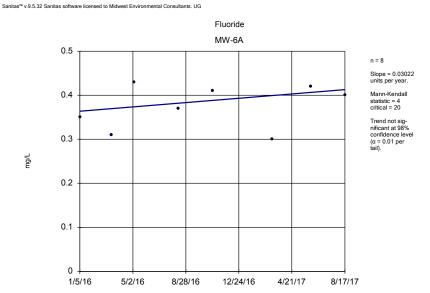
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

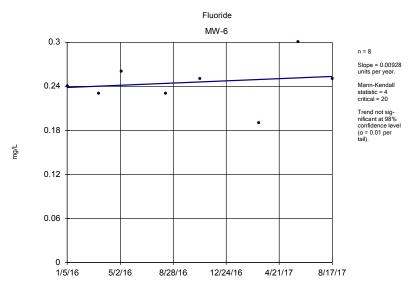

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



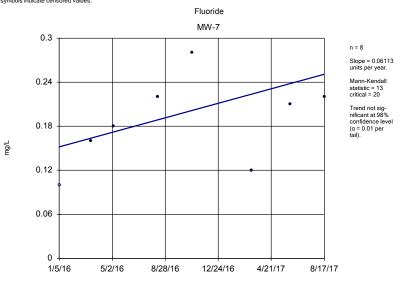
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

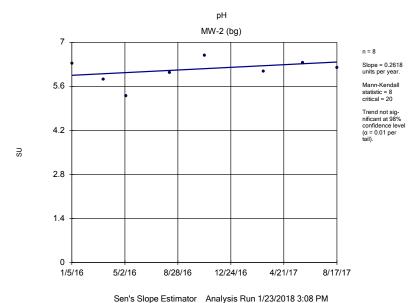


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

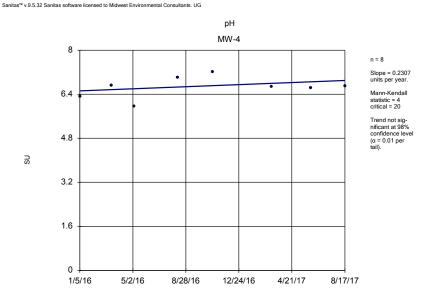
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

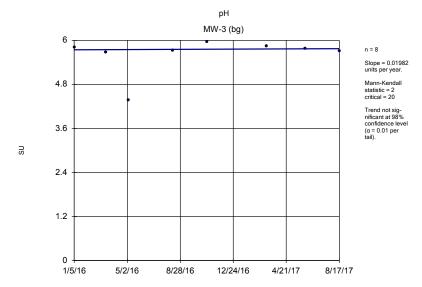

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas $^{\text{\tiny{IM}}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

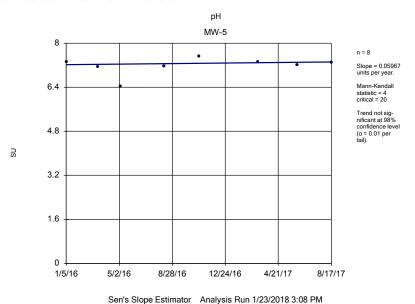


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

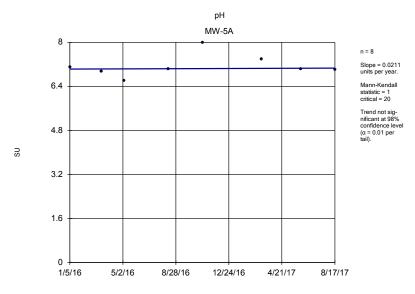
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

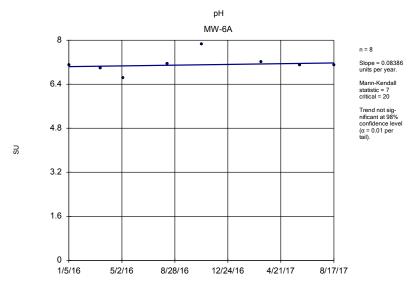

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

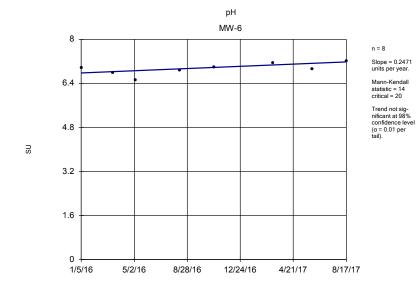
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



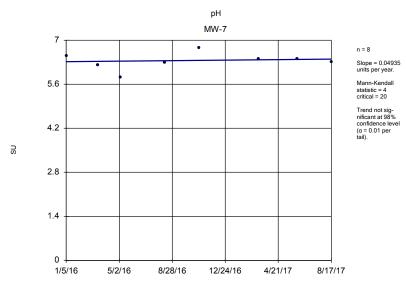
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

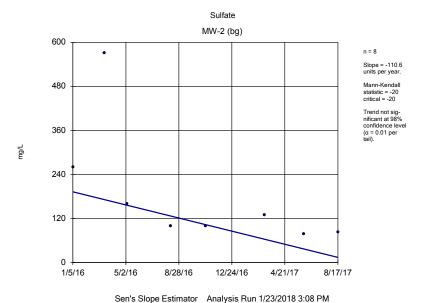

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

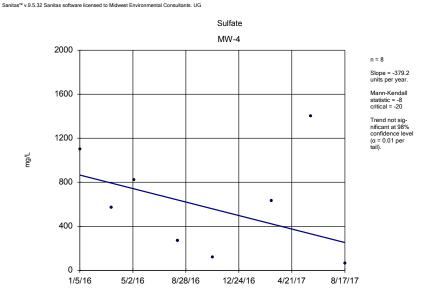
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

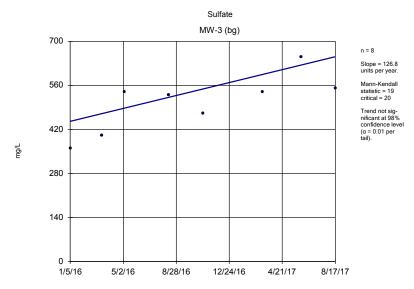

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

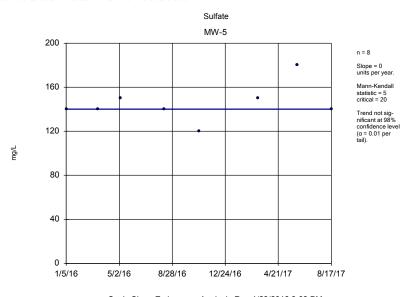


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

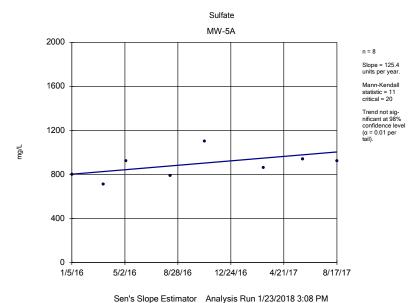
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



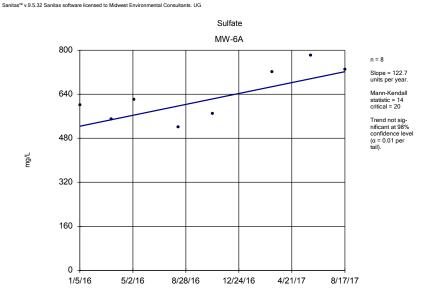
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

2000

1600

1200

1200

1200

800

400

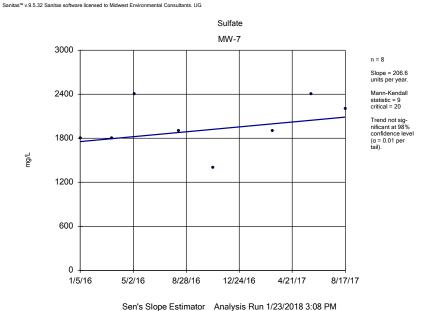
8/28/16

Sulfate

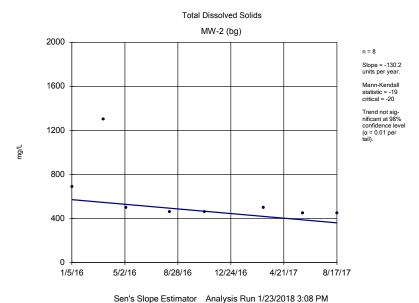
MW-6

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

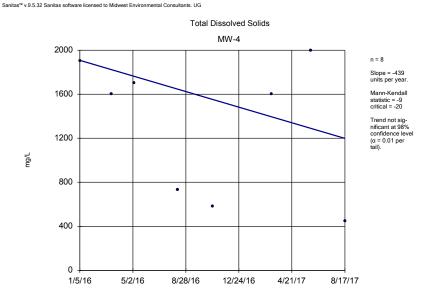
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


12/24/16

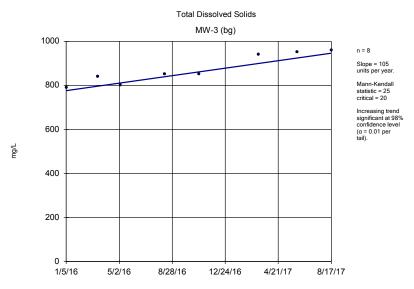
4/21/17


8/17/17

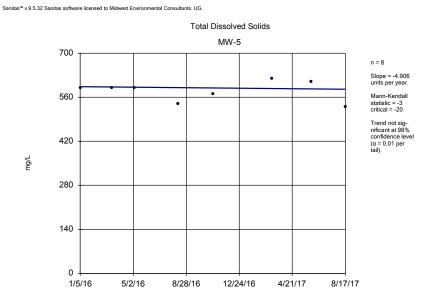
1/5/16


5/2/16

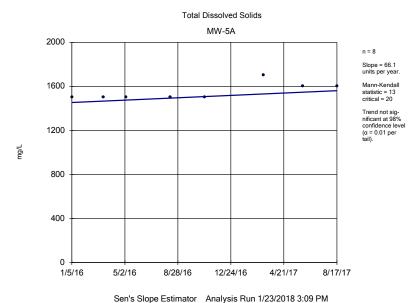
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



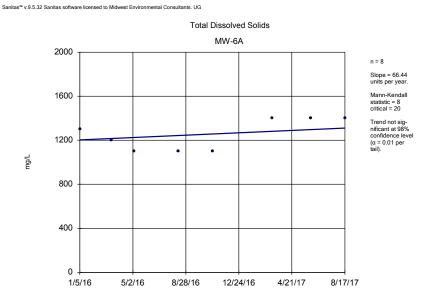
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

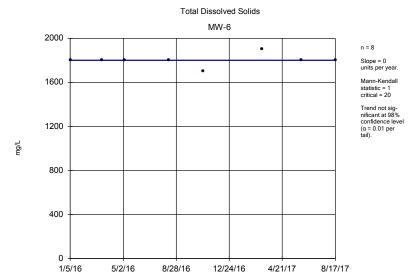

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

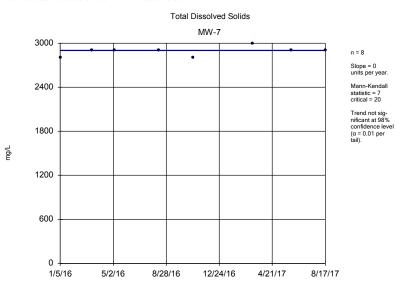


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

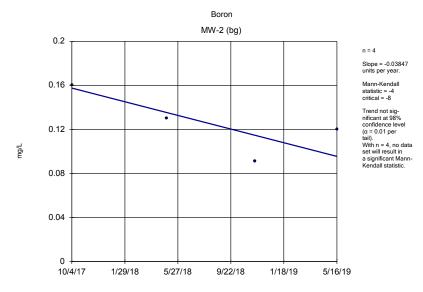

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

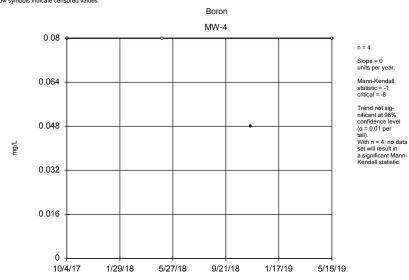
Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Trend Test

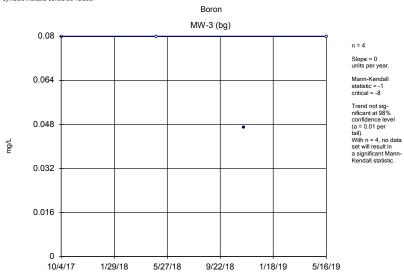
The	e Empire District	t Client: Midwest Environmental Consultants			Data: Asbury CCR Impoundments GW Baseline Database - App 3 only						Printed 1/23/2018, 3:10 PM			
Constituent		<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method		
Boron (mg/L)		MW-2 (bg)	-0.08868	-16	-20	No	8	0	n/a	n/a	0.02	NP		
Boron (mg/L)		MW-3 (bg)	-0.01797	-21	-20	Yes	8	50	n/a	n/a	0.02	NP		
Boron (mg/L)		MW-4	0	-1	-20	No	8	62.5	n/a	n/a	0.02	NP		
Boron (mg/L)		MW-5	0	0	20	No	8	12.5	n/a	n/a	0.02	NP		
Boron (mg/L)		MW-5A	0.03993	18	20	No	8	12.5	n/a	n/a	0.02	NP		
Boron (mg/L)		MW-6	0.06117	14	20	No	8	12.5	n/a	n/a	0.02	NP		
Boron (mg/L)		MW-6A	0.08497	19	20	No	8	12.5	n/a	n/a	0.02	NP		
Boron (mg/L)		MW-7	0	2	20	No	8	12.5	n/a	n/a	0.02	NP		
Calcium (mg/L)		MW-2 (bg)	-0.8333	-2	-20	No	8	0	n/a	n/a	0.02	NP		
Calcium (mg/L)		MW-3 (bg)	15.6	18	20	No	8	0	n/a	n/a	0.02	NP		
Calcium (mg/L)		MW-4	-36.95	-6	-20	No	8	0	n/a	n/a	0.02	NP		
Calcium (mg/L)		MW-5	-4.395	-3	-20	No	8	0	n/a	n/a	0.02	NP		
Calcium (mg/L)		MW-5A	16.74	10	20	No	8	0	n/a	n/a	0.02	NP		
Calcium (mg/L)		MW-6	7.67	8	20	No	8	0	n/a	n/a	0.02	NP		
Calcium (mg/L)		MW-6A	25.16	12	20	No	8	0	n/a	n/a	0.02	NP		
Calcium (mg/L)		MW-7	-5.401	0	20	No	8	0	n/a	n/a	0.02	NP		
Chloride (mg/L)		MW-2 (bg)	0	-8	-20	No	8	0	n/a	n/a	0.02	NP		
Chloride (mg/L)		MW-3 (bg)	-24.13	-20	-20	No	8	0	n/a	n/a	0.02	NP		
Chloride (mg/L)		MW-4	-27.17	-8	-20	No	8	0	n/a	n/a	0.02	NP		
Chloride (mg/L)		MW-5	0.3955	10	20	No	8	0	n/a	n/a	0.02	NP		
Chloride (mg/L)		MW-5A	-5.487	-8	-20	No	8	0	n/a	n/a	0.02	NP		
Chloride (mg/L)		MW-6	1.735	14	20	No	8	0	n/a	n/a	0.02	NP		
Chloride (mg/L)		MW-6A	-9.402	-10	-20	No	8	0	n/a	n/a	0.02	NP		
Chloride (mg/L)		MW-7	3.19	7	20	No	8	0	n/a	n/a	0.02	NP		
Fluoride (mg/L)		MW-2 (bg)	-0.02016	-8	-20	No	8	0	n/a	n/a	0.02	NP		
Fluoride (mg/L)		MW-3 (bg)	-0.1295	-16	-20	No	8	0	n/a	n/a	0.02	NP		
Fluoride (mg/L)		MW-4	-0.00	0	20	No	8	12.5	n/a	n/a	0.02	NP		
Fluoride (mg/L)		MW-5	-0.0291	-4	-20	No	8	0	n/a	n/a	0.02	NP		
Fluoride (mg/L)		MW-5A	0.08456	15	20	No	8	0	n/a	n/a	0.02	NP		
Fluoride (mg/L)		MW-6	0.00928	4	20	No	8	0	n/a	n/a	0.02	NP		
Fluoride (mg/L)		MW-6A	0.03022	4	20	No	8	0	n/a	n/a	0.02	NP		
Fluoride (mg/L)		MW-7	0.06113	13	20	No	8	12.5	n/a	n/a	0.02	NP		
pH (SU)		MW-2 (bg)	0.2618	8	20	No	8	0	n/a	n/a	0.02	NP		
pH (SU)		MW-3 (bg)	0.01982	2	20	No	8	0	n/a	n/a	0.02	NP		
pH (SU)		MW-4	0.2307	4	20	No	8	0	n/a	n/a	0.02	NP		
pH (SU)		MW-5	0.05967	4	20	No	8	0	n/a	n/a	0.02	NP		
pH (SU)		MW-5A	0.0211	1	20	No	8	0	n/a	n/a	0.02	NP		
pH (SU)		MW-6	0.2471	14	20	No	8	0	n/a	n/a	0.02	NP		
pH (SU)		MW-6A	0.08386	7	20	No	8	0	n/a	n/a	0.02	NP		
pH (SU)		MW-7	0.04935	4	20	No	8	0	n/a	n/a	0.02	NP		
Sulfate (mg/L)		MW-2 (bg)	-110.6	-20	-20	No	8	0	n/a	n/a	0.02	NP		
Sulfate (mg/L)		MW-3 (bg)	126.8	19	20	No	8	0	n/a	n/a	0.02	NP		
Sulfate (mg/L)		MW-4	-379.2	-8	-20	No	8	0	n/a	n/a	0.02	NP		
Sulfate (mg/L)		MW-5	0	5	20	No	8	0	n/a	n/a	0.02	NP		
Sulfate (mg/L)		MW-5A	125.4	11	20	No	8	0	n/a	n/a	0.02	NP		
Sulfate (mg/L)		MW-6	46.31	6	20	No	8	0	n/a ,	n/a	0.02	NP		
Sulfate (mg/L)		MW-6A	122.7	14	20	No	8	0	n/a ,	n/a	0.02	NP		
Sulfate (mg/L)		MW-7	206.6	9	20	No	8	0	n/a	n/a	0.02	NP		
Total Dissolved Solids (mg/L)		MW-2 (bg)	-130.2	-19	-20	No	8	0	n/a	n/a	0.02	NP		
Total Dissolved Solids (mg/L)		MW-3 (bg)	105	25	20	Yes	8	0	n/a	n/a	0.02	NP		


Trend Test

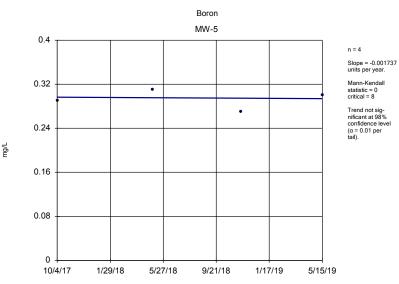

	The Empire District	Client: Midwest Er	vironmental Cons	ultants	Data: Asbury CCR Im	poundmer	nts GW E	Baseline Datab	ase - App 3 only	Printed 1	/23/2018, 3:10 PM	
Constituent		<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)		MW-4	-439	-9	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-5	-4.906	-3	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-5A	66.1	13	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-6	0	1	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-6A	66.44	8	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-7	0	7	20	No	8	0	n/a	n/a	0.02	NP

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

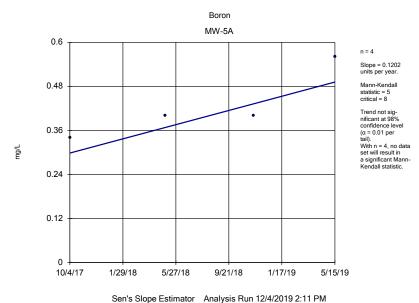
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



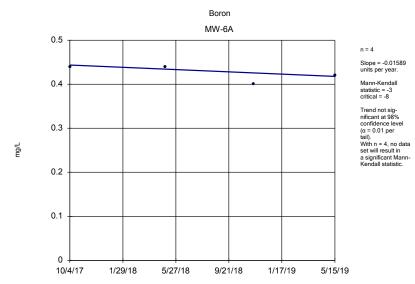
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

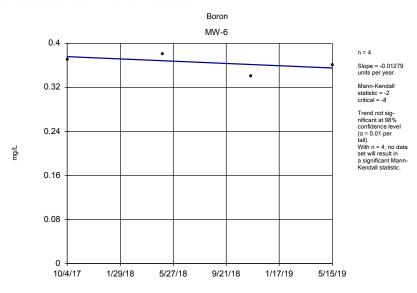
Sanitas $^{\text{™}}$ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

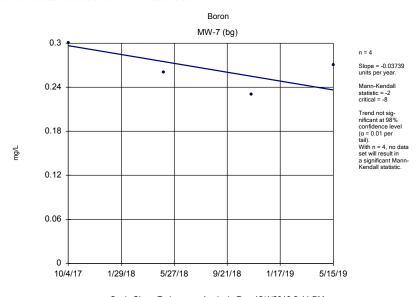

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

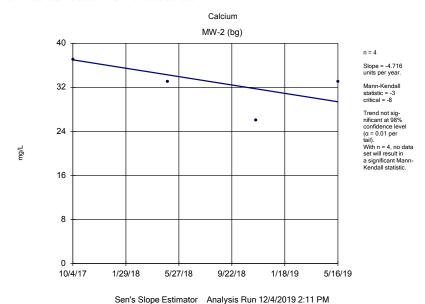

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

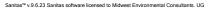

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

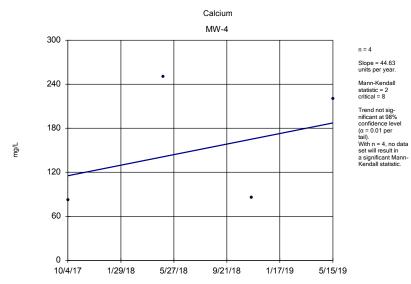

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

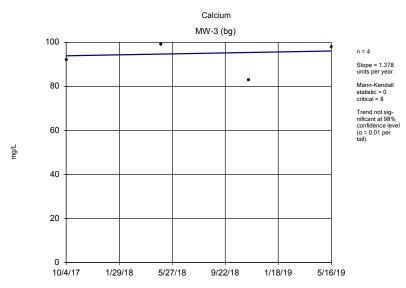

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

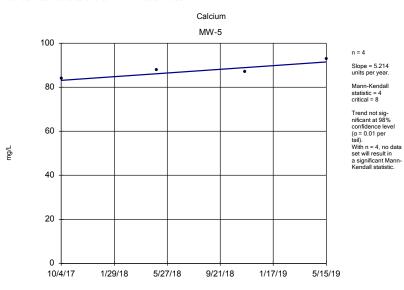
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background




Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

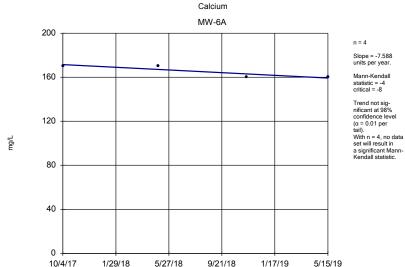

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

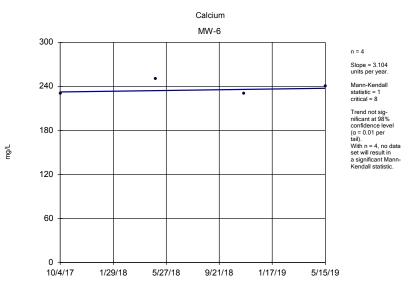
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

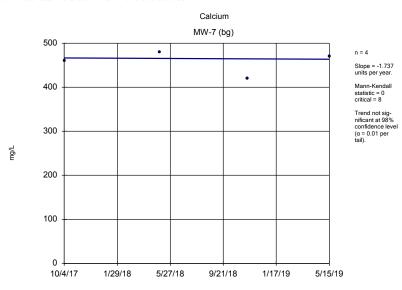

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

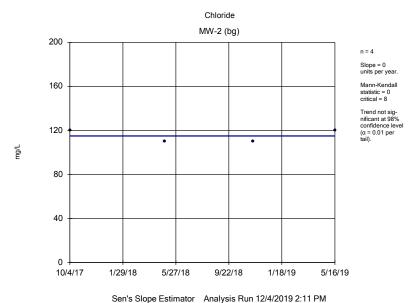

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

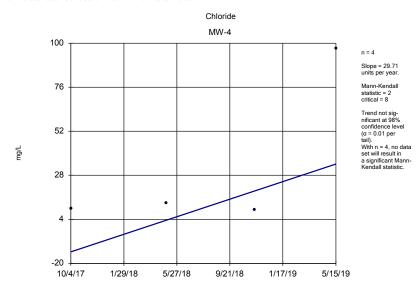

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

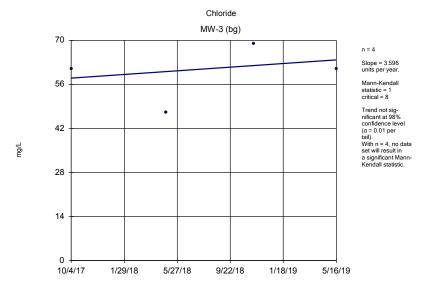
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

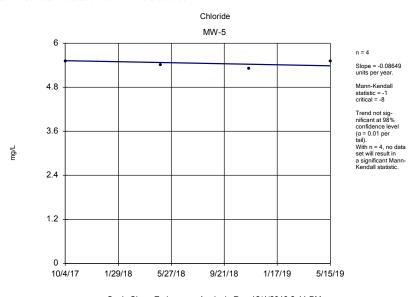

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

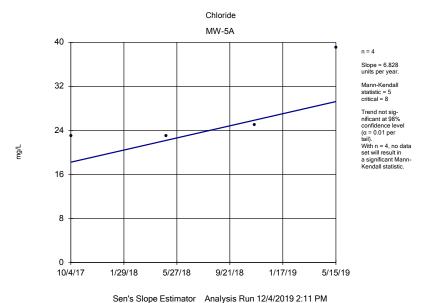

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

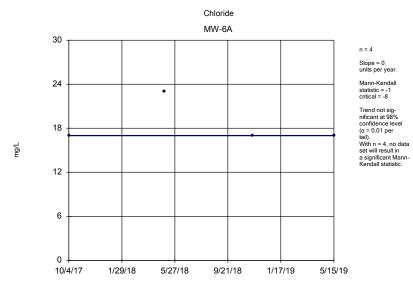

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

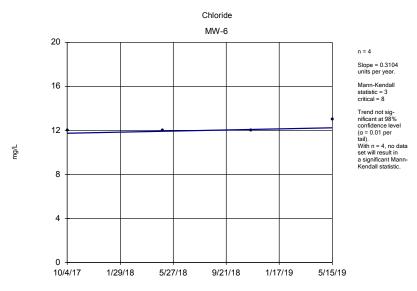
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

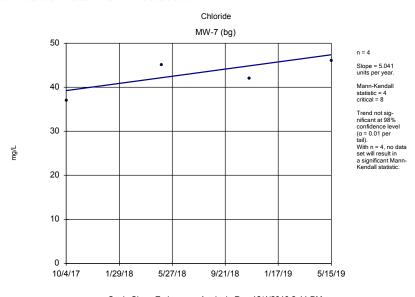

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

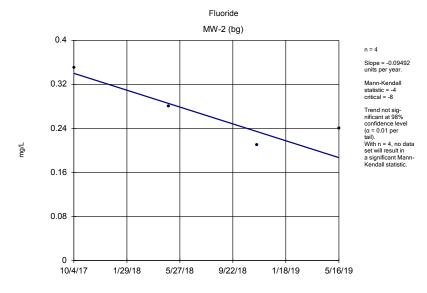

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

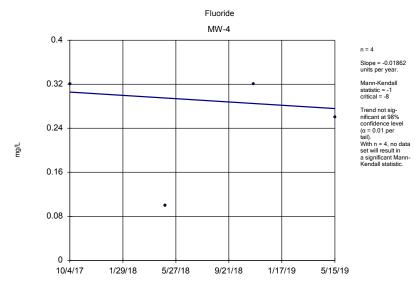

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

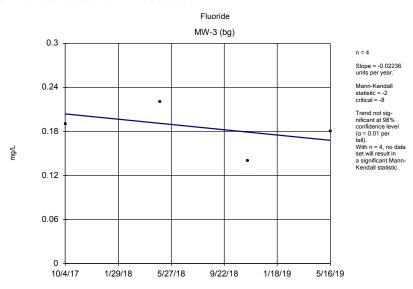

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

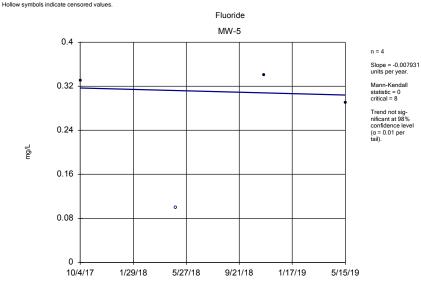
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

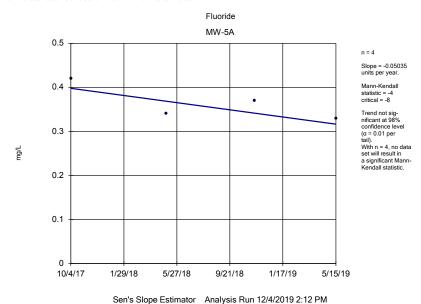
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

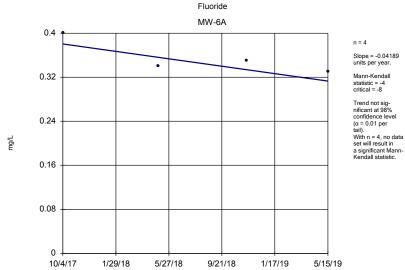
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



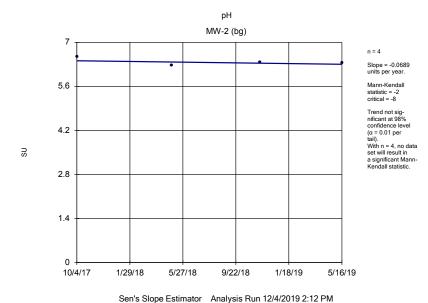
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

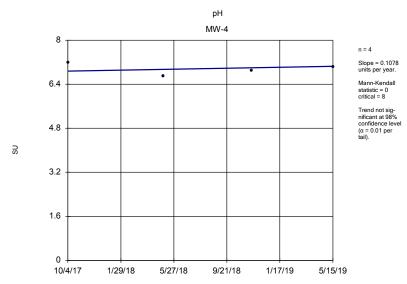
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

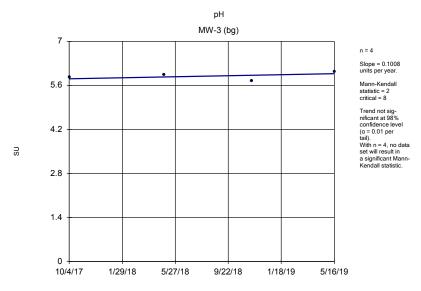

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

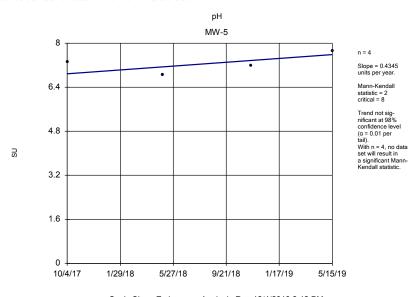


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

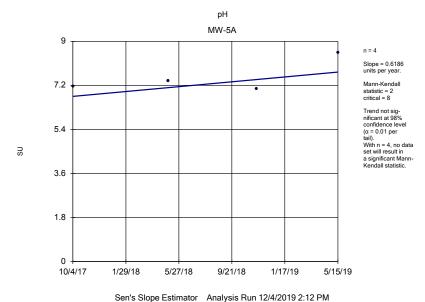
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



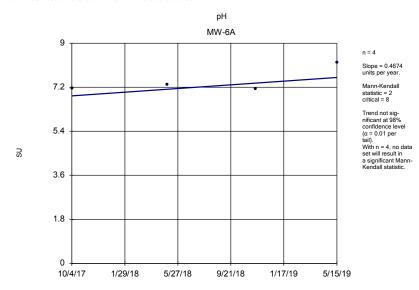
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

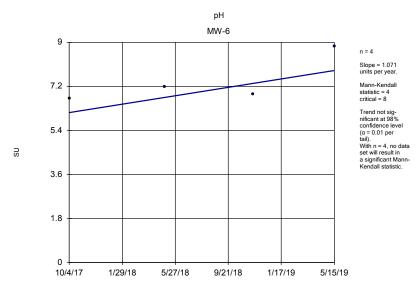
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

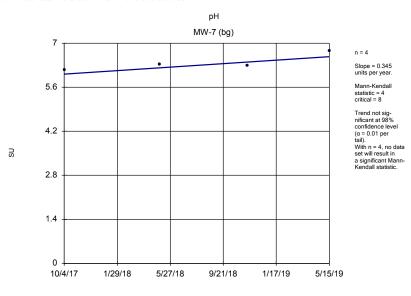

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

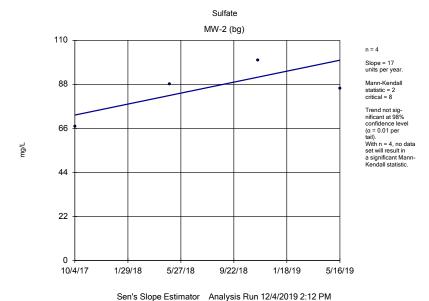

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

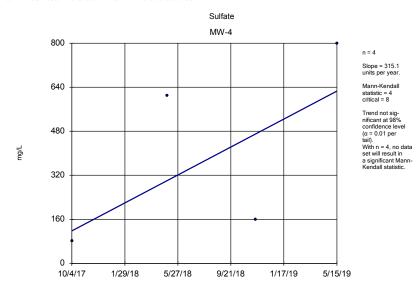

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

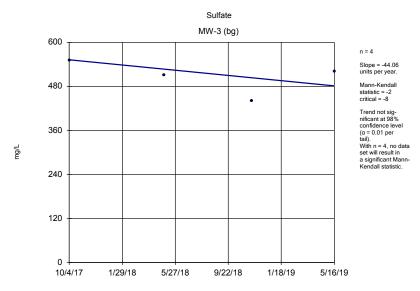
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

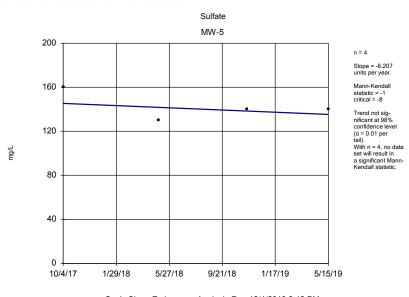

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

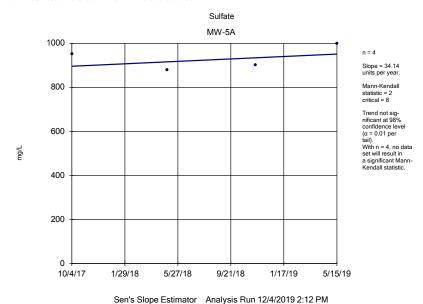

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

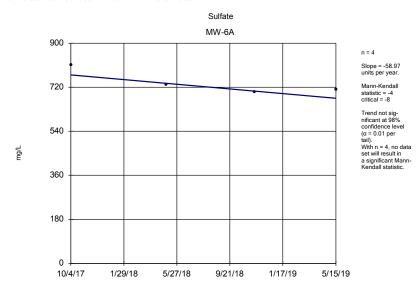

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

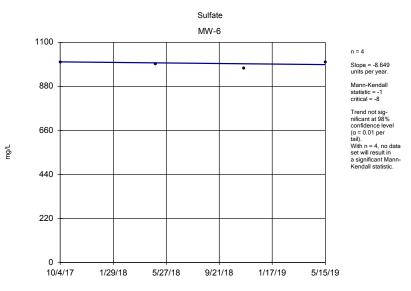
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

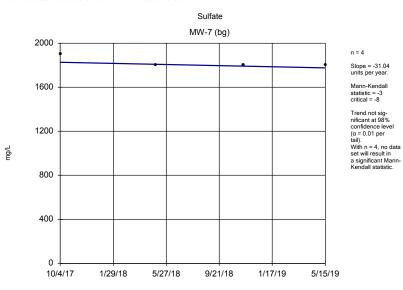

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

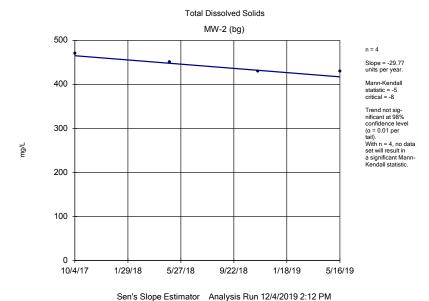

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

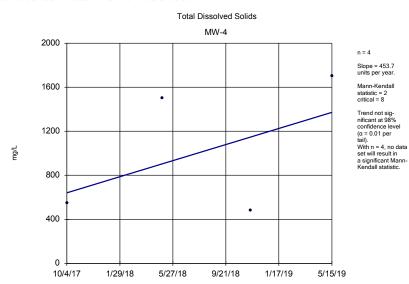

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

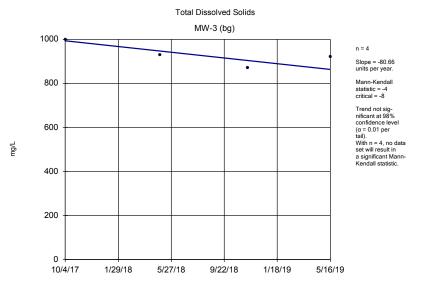

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

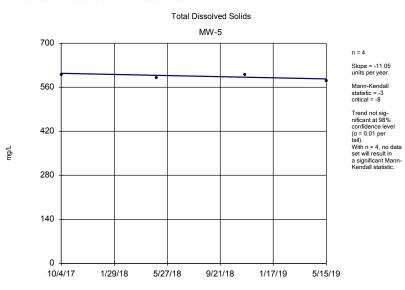


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

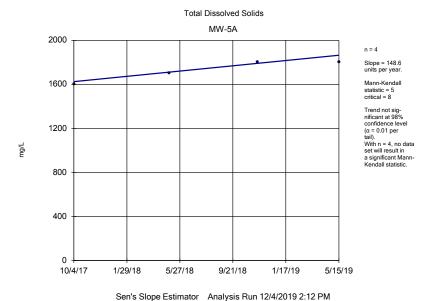
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



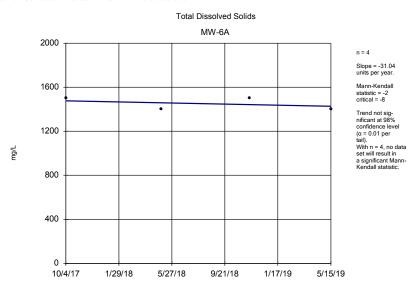
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

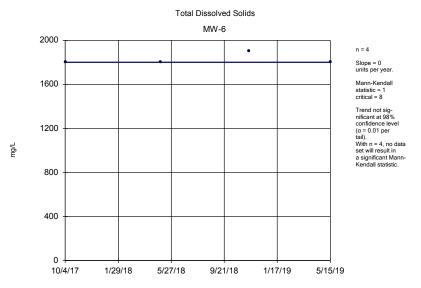
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

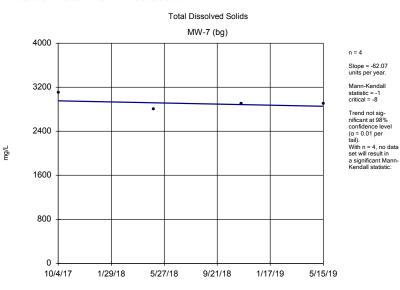

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

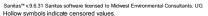
Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

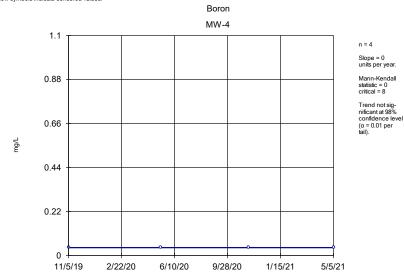
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

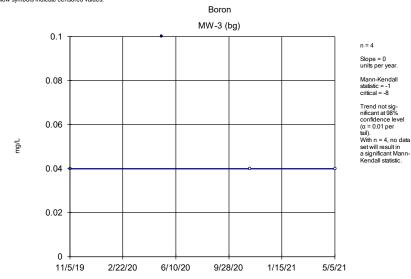
	The Empire District Client: Mic	dwest Environme	ental Consultants	Data: 11-	19 App 3 As	bury pond	s with backg	round Printe	ed 12/4/2019, 2:		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.03847	-4	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	-0.00	0	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.1202	5	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.01279	-2	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01589	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.03739	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-4.716	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	1.378	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	44.63	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	5.214	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	14.15	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	3.104	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	-7.588	-4	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	-1.737	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	0	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	3.596	1	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	29.71	2	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	-0.08649	- -1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	6.828	5	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	0.3104	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	0	-1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	5.041	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	-0.09492	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	-0.02236	-2	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.01862	<u>-</u> -1	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5	-0.00	0	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5A	-0.05035	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	-0.03966	-3	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	-0.04189	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	-0.01557	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.0689	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	0.1008	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	0.1078	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	0.4345	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	0.6186	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	1.071	4	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	0.4674	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	0.345	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	17	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	-44.06	-2	-8	No	4	0	n/a	n/a	0.02	NP
											NP
Sulfate (mg/L) Sulfate (mg/L)	MW-4 MW-5	315.1 -6.207	4	8 -8	No No	4 4	0 0	n/a	n/a	0.02 0.02	NP NP
			-1 2	-8 8	No No	4	0	n/a	n/a		NP NP
Sulfate (mg/L)	MW-5A	34.14	2		No			n/a	n/a	0.02	
Sulfate (mg/L)	MW-6	-8.649 50.07	-1	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	-58.97	-4	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	-31.04	-3	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	-29.77	-5	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	-80.66	-4	-8	No	4	0	n/a	n/a	0.02	NP


Trend Test


	The Empire District Client: Mi	dwest Environm	ental Consultants	Data: 11-19	Data: 11-19 App 3 Asbury ponds with background Printed 12/4/2019, 2:13 PM						
Constituent	Well	<u>Slope</u>	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	MW-4	453.7	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5	-11.05	-3	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5A	148.6	5	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6	0	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6A	-31.04	-2	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-7 (bg)	-62.07	-1	-8	No	4	0	n/a	n/a	0.02	NP

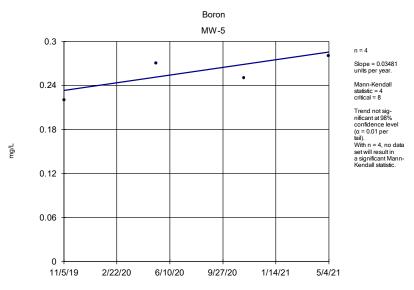
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

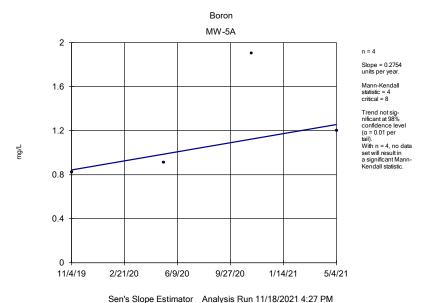


Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

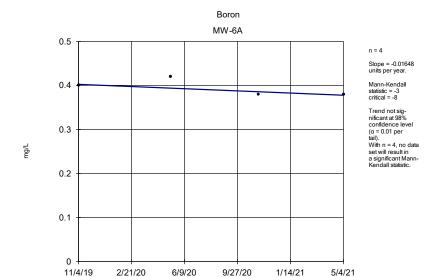
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

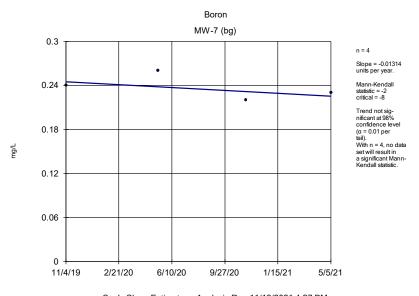


Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

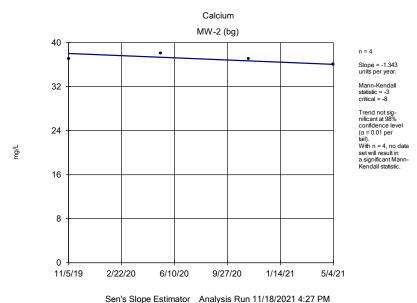
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

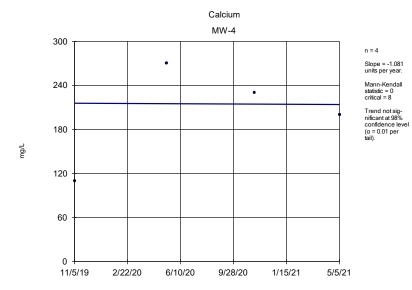
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

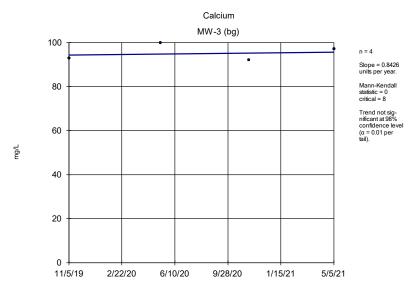
Boron MW-6 0.4 Slope = -0.003336 units per year. Mann-Kendall 0.32 statistic = -1 critical = -8 Trend not sig-nificant at 98% confidence level 0.24 $(\alpha = 0.01 \text{ per})$ With n = 4, no data mg/L set will result in a significant Mann-Kendall statistic. 0.16 0.08 11/4/19 2/21/20 6/9/20 9/27/20 1/14/21 5/4/21

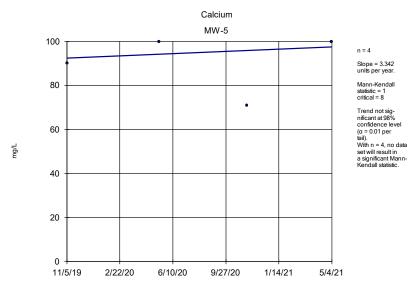
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

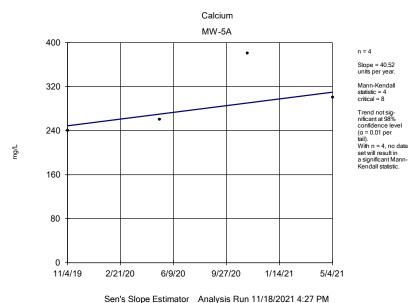

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

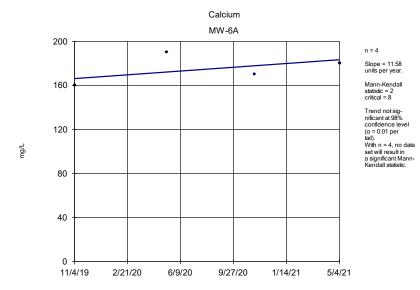

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

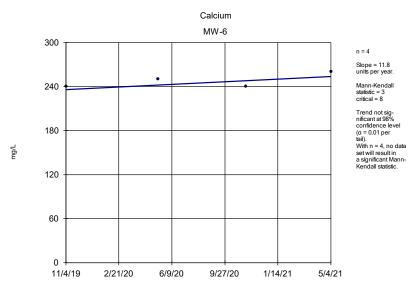
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

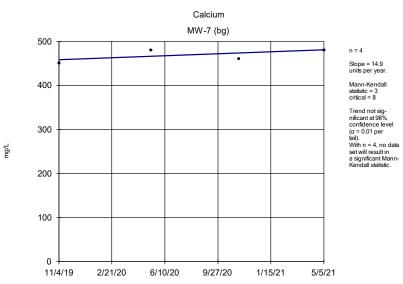

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

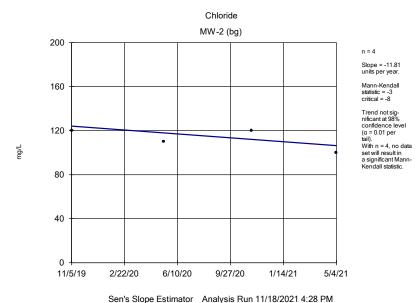

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

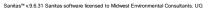

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

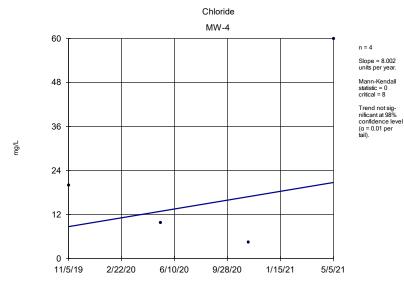

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

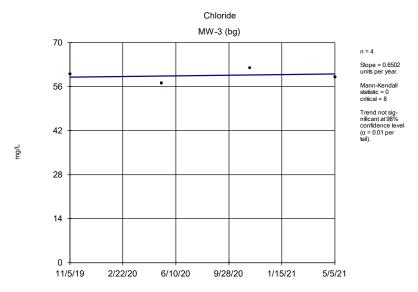

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

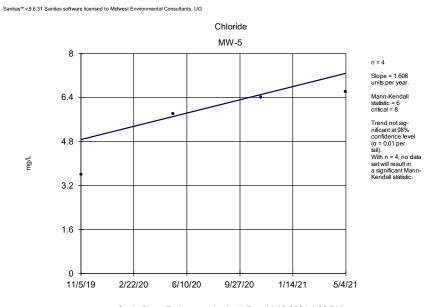
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



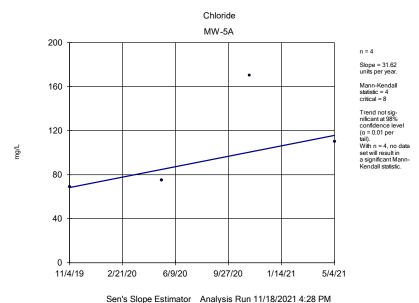

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

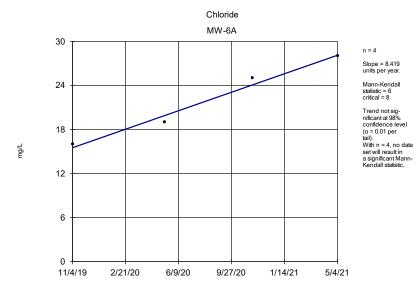

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

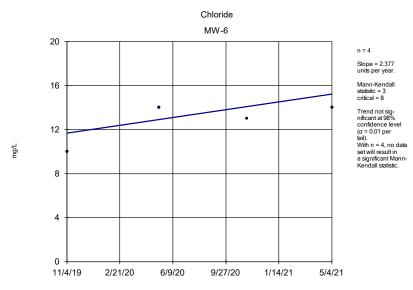

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

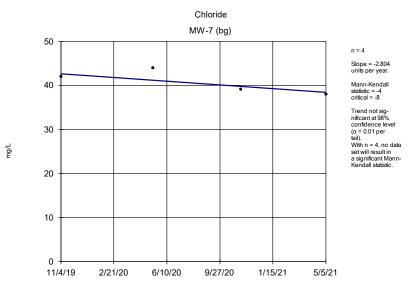


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

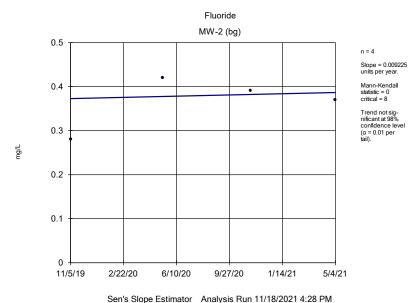
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



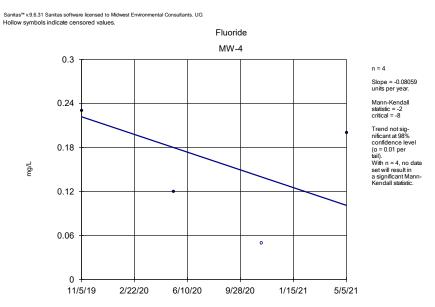
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

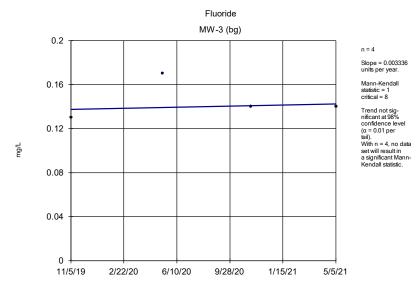

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



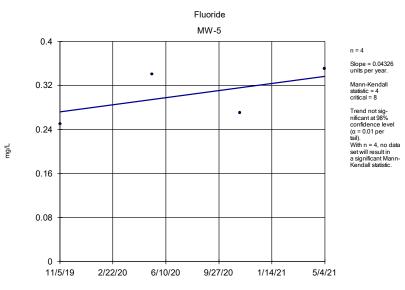
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



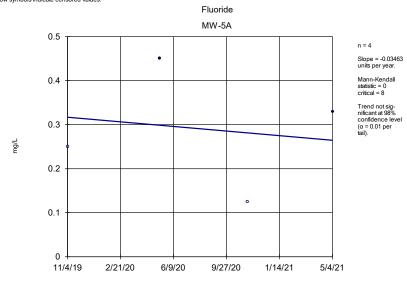
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

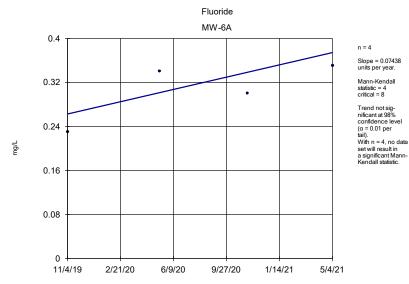
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



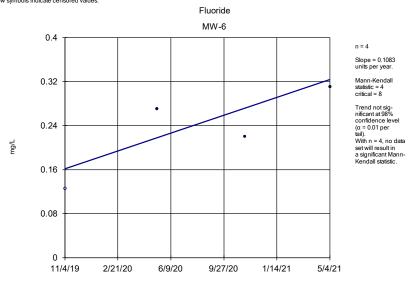
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

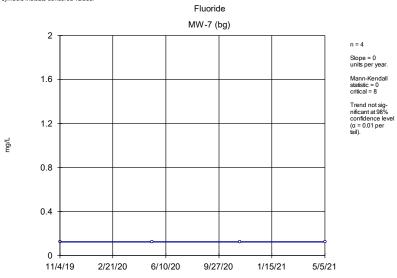
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


${\sf Sanitas^{\sf TM}} \ v. 9.6.31 \ {\sf Sanitas} \ {\sf software} \ {\sf licensed} \ to \ {\sf Midwest} \ {\sf Environmental} \ {\sf Consultants}. \ {\sf UG}$

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

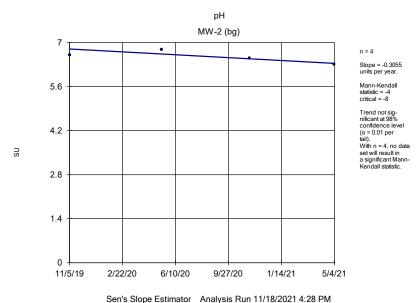
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.



Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

11/5/19

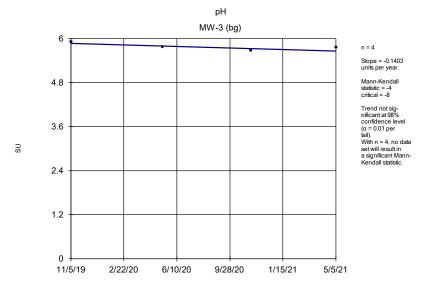
2/22/20

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

рΗ

MW-4 n = 4 Slope = -0.5684 units per year. Mann-Kendall statistic = -2 critical = -8 6.4 Trend not sig-nificant at 98% confidence level 4.8 $(\alpha = 0.01 \text{ per})$ With n = 4, no data SU set will result in a significant Mann-Kendall statistic. 3.2 1.6

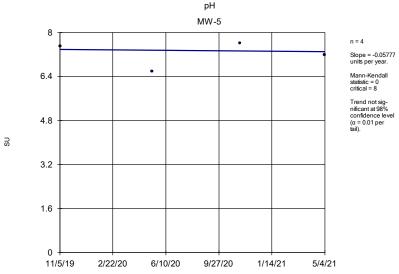
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

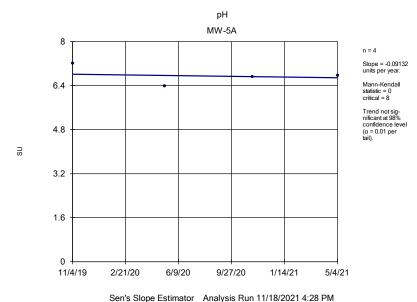
9/28/20

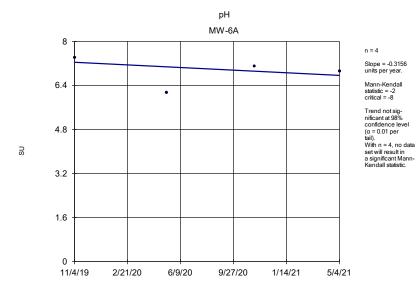
1/15/21

5/5/21

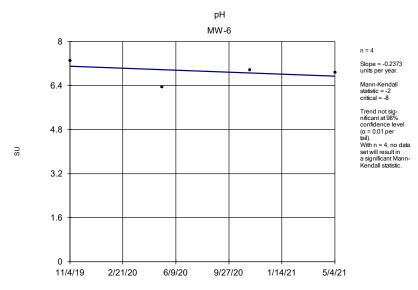

6/10/20

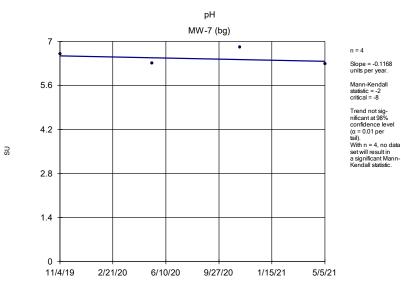
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

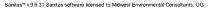

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

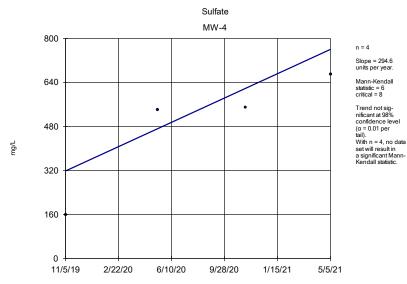

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

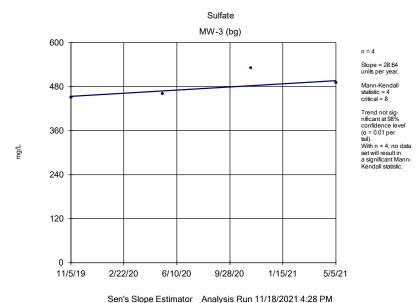
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

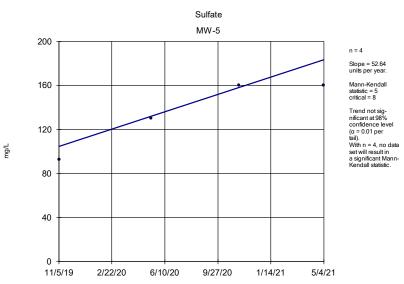
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background




Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

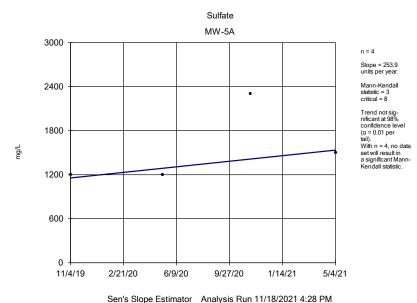
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

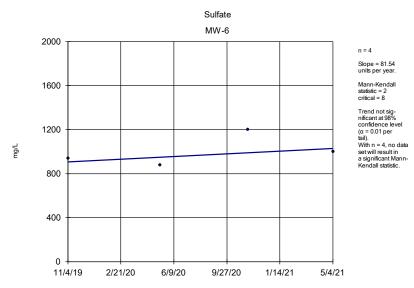
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

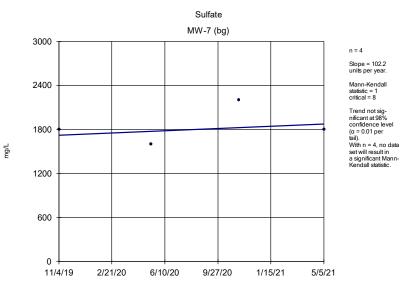


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

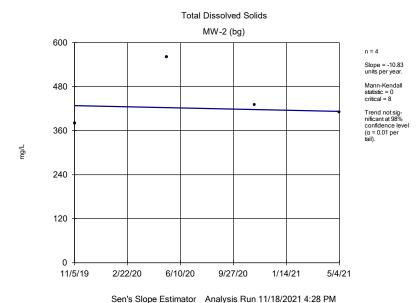
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

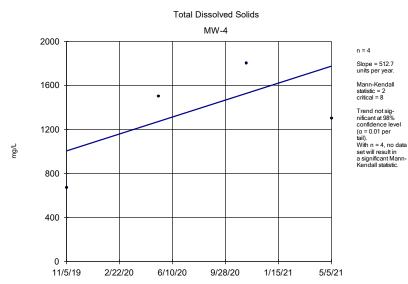

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

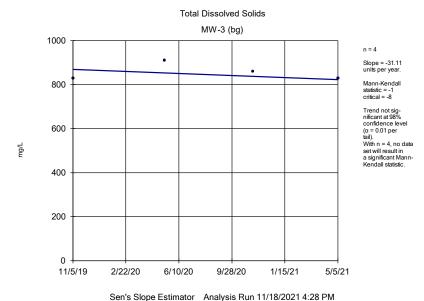
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

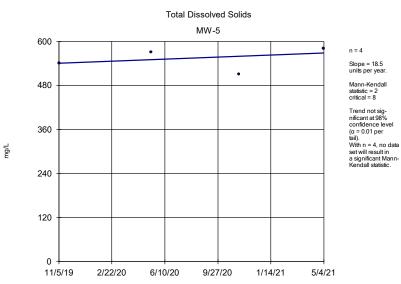

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

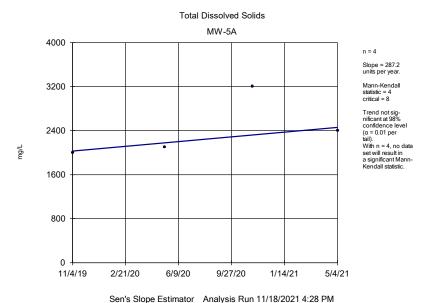
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

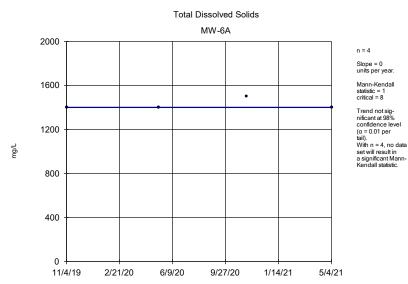


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

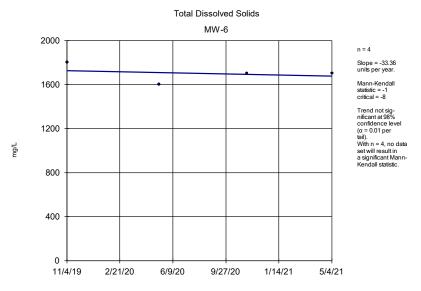


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

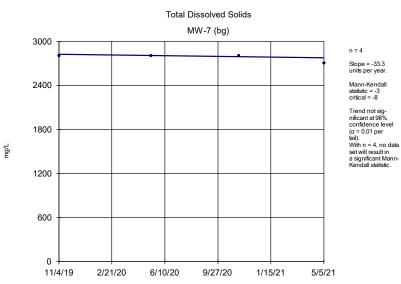


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

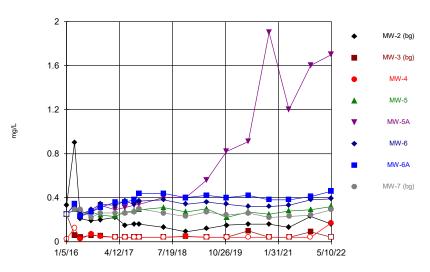
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

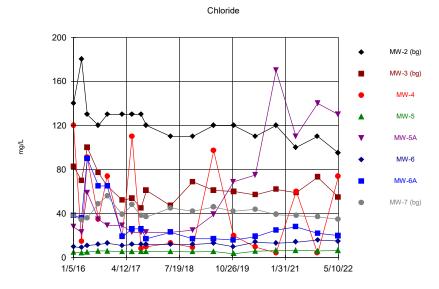
	The Empire District Client: Mid	west Environme	ntal Consultants	Data: 11-2	1 App 3 Asl	bury ponds	with backg	ound Printed	11/18/2021, 4:2	8 PM	
Constituent	<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.00	-1	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	0	8	No	4	100	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	0.03481	4	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.2754	4	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.00	-1	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01648	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.01314	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-1.343	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	0.8426	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	-1.081	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	3.342	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	40.52	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	11.8	3	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	11.58	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	14.9	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	-11.81	-3	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	0.6502	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	8.002	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	1.608	6	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	31.62	4	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	2.377	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	8.419	6	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	-2.804	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	0.009225	0	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	0.003336	1	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.08059	-2	-8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5	0.04326	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5A	-0.03463	0	8	No	4	50	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	0.1083	4	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	0.07438	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	0	0	8	No	4	100	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.3055	-4	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	-0.1403	-4	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	-0.5684	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	-0.05777	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	-0.09132	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	-0.2373	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	-0.3156	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	-0.1168	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	-6.294	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	28.64	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-4	294.6	6	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5	52.64	5	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5A	253.9	3	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6	81.54	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	115.4	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	102.2	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	-10.83	0	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	-31.11	-1	-8	No	4	0	n/a	n/a	0.02	NP
(J. /	- (3/										

Trend Test


	The Empire District Client: Mic	lwest Environm	ental Consultants	Data: 11-2	1 App 3 Asl	oury ponds	s with backgi	round Printed	1 11/18/2021, 4	:28 PM	
Constituent	<u>Well</u>	Slope	<u>Calc.</u>	Critical	Sig.	<u>N</u>	%NDs	<u>Normality</u>	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	MW-4	512.7	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5	18.5	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5A	287.2	4	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6	-33.36	-1	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6A	0	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-7 (bg)	-33.3	-3	-8	No	4	0	n/a	n/a	0.02	NP

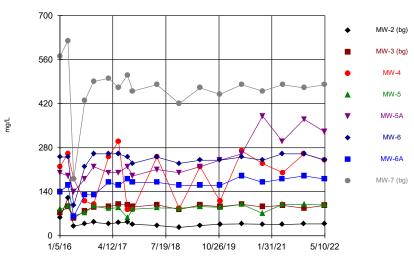
Sanitas[™] Output – Sampling Event

Time Series Analysis



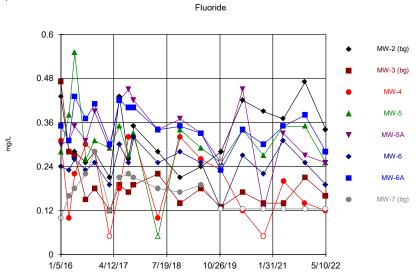
Time Series Analysis Run 5/26/2022 4:59 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background


${\sf Sanitas^{\sf TM}} \ v. 9.6.34 \ {\sf Sanitas} \ {\sf software} \ {\sf licensed} \ to \ {\sf Midwest} \ {\sf Environmental} \ {\sf Consultants}. \ {\sf UG}$

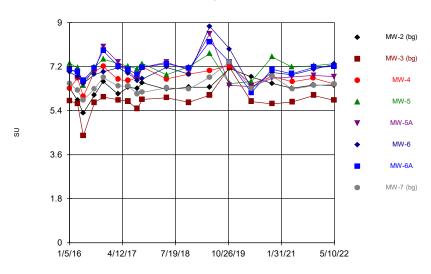
Time Series Analysis Run 5/26/2022 4:59 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background


Calcium

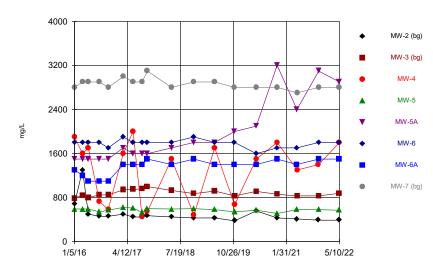
Time Series Analysis Run 5/26/2022 4:59 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background


Sanitas™ v.9.6.34 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Time Series Analysis Run 5/26/2022 4:59 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background

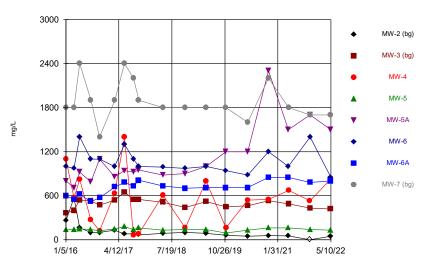


Time Series Analysis Run 5/26/2022 4:59 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background

Sanitas™ v.9.6.34 Sanitas software licensed to Midwest Environmental Consultants. UG

Total Dissolved Solids



Time Series Analysis Run 5/26/2022 4:59 PM

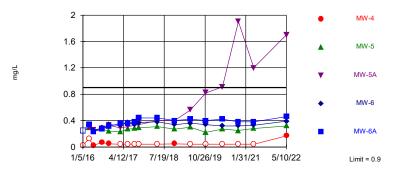
The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background

Sanitas™ v.9.6.34 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sulfate

Time Series Analysis Run 5/26/2022 4:59 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background

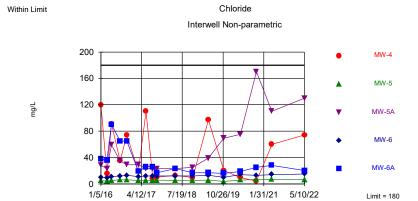


Sanitas[™] Output – Sampling Event Prediction Limits

Hollow symbols indicate censored values.

Boron Exceeds Limit: MW-5A

Interwell Non-parametric

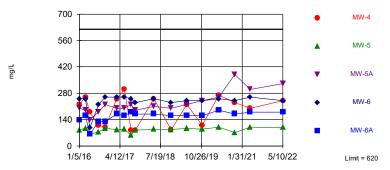


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 51 background values. 23.53% NDs. Annual perconstituent alpha = 0.004342. Individual comparison alpha = 0.000725 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 5/26/2022 5:02 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background

Sanitas™ v 9 6 34 Sanitas software licensed to Midwest Environmental Consultants. UG



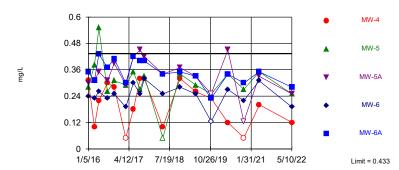
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 51 background values. Annual per-constituent alpha = 0.004342. Individual comparison alpha = 0.000725 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Sanitas™ v.9.6.34 Sanitas software licensed to Midwest Environmental Consultants. UG

Calcium Within Limit

Interwell Non-parametric

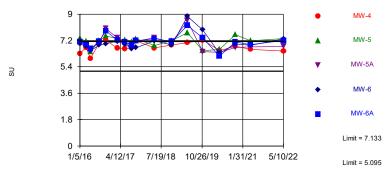
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 51 background values. Annual per-constituent alpha = 0.004342. Individual comparison alpha = 0.000725 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.


Prediction Limit Analysis Run 5/26/2022 5:02 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background

Sanitas™ v 9 6 34 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values

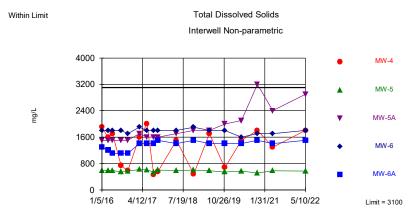
Fluoride Within Limit


Interwell Parametric

Background Data Summary (based on square root transformation): Mean=0.4648, Std. Dev.=0.09453, n=51, 11.76% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9511, critical = 0.935. Kappa = 2.044 (c=23, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002288. Individual comparison alpha = 0.0007632. Comparing 5 points to limit.

Exceeds Limits: MW-5, MW-6, MW-6A pH

Interwell Parametric

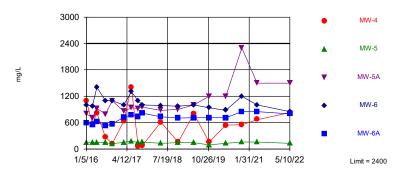


Background Data Summary (based on square transformation): Mean=38.42, Std. Dev.=6.098, n=51. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9427, critical = 0.935. Kappa = 2.044 (c=23, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.00288. Individual comparison alpha = 0.0003816. Comparing 5 points to limit.

Prediction Limit Analysis Run 5/26/2022 5:02 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background

Sanitas™ v.9.6.34 Sanitas software licensed to Midwest Environmental Consultants. UG


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 51 background values. Annual per-constituent alpha = 0.004342. Individual comparison alpha = 0.000725 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 5/26/2022 5:02 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background

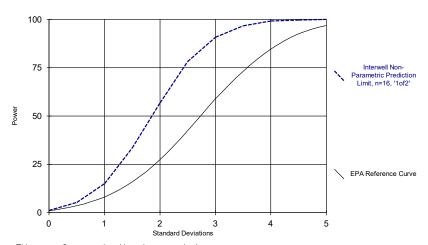
Sanitas™ v.9.6.34 Sanitas software licensed to Midwest Environmental Consultants. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 51 background values. Annual per-constituent alpha = 0.004342. Individual comparison alpha = 0.000725 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 5/26/2022 5:02 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background

Prediction Limit


	The Empire District				s Data: 5-22 App 3 Asbury ponds with background Printed 5/26/2022, 5:09 PM							
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	Method	
Boron (mg/L)	MW-4	0.9	n/a	5/10/2022	0.17	No	51	23.53	n/a	0.000725	NP Inter (normality)	
Boron (mg/L)	MW-5	0.9	n/a	5/10/2022	0.32	No	51	23.53	n/a	0.000725	NP Inter (normality)	
Boron (mg/L)	MW-5A	0.9	n/a	5/10/2022	1.7	Yes	51	23.53	n/a	0.000725	NP Inter (normality)	
Boron (mg/L)	MW-6	0.9	n/a	5/10/2022	0.39	No	51	23.53	n/a	0.000725	NP Inter (normality)	
Boron (mg/L)	MW-6A	0.9	n/a	5/10/2022	0.46	No	51	23.53	n/a	0.000725	NP Inter (normality)	
Calcium (mg/L)	MW-4	620	n/a	5/10/2022	240	No	51	0	n/a	0.000725	NP Inter (normality)	
Calcium (mg/L)	MW-5	620	n/a	5/10/2022	98	No	51	0	n/a	0.000725	NP Inter (normality)	
Calcium (mg/L)	MW-5A	620	n/a	5/10/2022	330	No	51	0	n/a	0.000725	NP Inter (normality)	
Calcium (mg/L)	MW-6	620	n/a	5/10/2022	240	No	51	0	n/a	0.000725	NP Inter (normality)	
Calcium (mg/L)	MW-6A	620	n/a	5/10/2022	180	No	51	0	n/a	0.000725	NP Inter (normality)	
Chloride (mg/L)	MW-4	180	n/a	5/10/2022	74	No	51	0	n/a	0.000725	NP Inter (normality)	
Chloride (mg/L)	MW-5	180	n/a	5/10/2022	6.4	No	51	0	n/a	0.000725	NP Inter (normality)	
Chloride (mg/L)	MW-5A	180	n/a	5/10/2022	130	No	51	0	n/a	0.000725	NP Inter (normality)	
Chloride (mg/L)	MW-6	180	n/a	5/10/2022	15	No	51	0	n/a	0.000725	NP Inter (normality)	
Chloride (mg/L)	MW-6A	180	n/a	5/10/2022	20	No	51	0	n/a	0.000725	NP Inter (normality)	
Fluoride (mg/L)	MW-4	0.433	n/a	5/10/2022	0.12	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2	
Fluoride (mg/L)	MW-5	0.433	n/a	5/10/2022	0.25	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2	
Fluoride (mg/L)	MW-5A	0.433	n/a	5/10/2022	0.25	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2	
Fluoride (mg/L)	MW-6	0.433	n/a	5/10/2022	0.19	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2	
Fluoride (mg/L)	MW-6A	0.433	n/a	5/10/2022	0.28	No	51	11.76	sqrt(x)	0.000	Param Inter 1 of 2	
pH (SU)	MW-4	7.133	5.095	5/10/2022	6.48	No	51	0	x^2	0.000	Param Inter 1 of 2	
pH (SU)	MW-5	7.133	5.095	5/10/2022	7.32	Yes	51	0	x^2	0.000	Param Inter 1 of 2	
pH (SU)	MW-5A	7.133	5.095	5/10/2022	6.79	No	51	0	x^2	0.000	Param Inter 1 of 2	
pH (SU)	MW-6	7.133	5.095	5/10/2022	7.3	Yes	51	0	x^2	0.000	Param Inter 1 of 2	
pH (SU)	MW-6A	7.133	5.095	5/10/2022	7.2	Yes	51	0	x^2	0.000	Param Inter 1 of 2	
Sulfate (mg/L)	MW-4	2400	n/a	5/10/2022	830	No	51	0	n/a	0.000725	NP Inter (normality)	
Sulfate (mg/L)	MW-5	2400	n/a	5/10/2022	130	No	51	0	n/a	0.000725	NP Inter (normality)	
Sulfate (mg/L)	MW-5A	2400	n/a	5/10/2022	1500	No	51	0	n/a	0.000725	NP Inter (normality)	
Sulfate (mg/L)	MW-6	2400	n/a	5/10/2022	850	No	51	0	n/a	0.000725	NP Inter (normality)	
Sulfate (mg/L)	MW-6A	2400	n/a	5/10/2022	800	No	51	0	n/a	0.000725	NP Inter (normality)	
Total Dissolved Solids (mg/L)	MW-4	3100	n/a	5/10/2022	1800	No	51	0	n/a	0.000725	NP Inter (normality)	
Total Dissolved Solids (mg/L)	MW-5	3100	n/a	5/10/2022	570	No	51	0	n/a	0.000725	NP Inter (normality)	
Total Dissolved Solids (mg/L)	MW-5A	3100	n/a	5/10/2022	2900	No	51	0	n/a	0.000725	NP Inter (normality)	
Total Dissolved Solids (mg/L)	MW-6	3100	n/a	5/10/2022	1800	No	51	0	n/a	0.000725	NP Inter (normality)	
Total Dissolved Solids (mg/L)	MW-6A	3100	n/a	5/10/2022	1500	No	51	0	n/a	0.000725	NP Inter (normality)	

Sanitas[™] Output – Sampling Event

Power Curve

Power Curve

This report reflects annual total based on two evaluations per year.

Analysis Run 5/26/2022 5:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-22 App 3 Asbury ponds with background

APPENDIX B

November 2022 Sampling Event

2022 Groundwater Monitoring, Sampling & Statistics **Per EPA CCR Rule (CFR § 257.90-.98)**

November 2022 Sampling Event

Asbury Power Plant CCR Impoundment Jasper County, MO

January 2023

Prepared For:

The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE LOCATION	2
2.1 History	2
2.2 Site Geology	2
2.3 Groundwater Monitoring Network Design	3
2.4 Groundwater Monitoring Network	3
2.5 Seasonal Variation	4
2.6 Groundwater Flow Direction	4
3.0 BASELINE GROUNDWATER DATA	5
3.1 Baseline Data Collection	5
3.2 Background Data Analysis	5
4.0 GROUNDWATER SAMPLING EVENT	6
5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA	7
5.1 Precision	7
5.2 Accuracy	7
5.3 Representativeness	7
5.4 Comparability	7
5.5 Completeness	8
6.0 STATISTICAL ANALYSIS	9
6.1 Sampling Results	9
6.2 Statistical Analysis	9
6.3 Results Interpretation	11
6.4 Proposed Actions	16
LIST OF FIGURES	
Figure 1 – Site Location	

LIST OF APPENDICES

Appendix 1 – EPA/MDNR Correspondence

Figure 2 – Monitoring Well Location Figure 3 – Potentiometric Map

Appendix 2 – Baseline Sampling Information

Appendix 3 – Monitoring Well Field Inspection Sheets and Field Notes

Appendix 4 – Analytical Results from Lab

Appendix 5 – Statistical Analysis

1.0 INTRODUCTION

The EPA Coal Combustion Residual Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundments. This Asbury Power Plant CCR impoundment groundwater monitoring sampling report is in accordance with the EPA CCR Rule. In accordance with the EPA CCR Rule (§ 257.90-.98) the status of the Groundwater Monitoring was placed on-line October 17, 2017, as required by the EPA CCR rule. On November 2, 2017, the facility received approval from Missouri Department of Natural Resources (MDNR) of their groundwater system (included in **Appendix 1**). Empire notified the MDNR "State Director" via e-mail when this document was posted on-line, as required in the CCR rule. The EPA CCR Rule requires the annual groundwater report to be prepared by January 31st of the following year. The first report was due January 31, 2018. This report was prepared in general accordance with the EPA CCR Rule for groundwater requirements. These regulations outline groundwater monitoring requirements and data evaluation methods. The annual groundwater report for the 2022 sampling events will be posted on-line within 30 days of placement in the operating record.

The purpose of the groundwater monitoring plan is to monitor the ground water quality surrounding the facility and to evaluate potential impacts and/or releases from facility operations. Background groundwater data was collected from January 2016 to August 2017. After the background data plus the first semi-annual sampling events, a reduced sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will generally be completed during the months of May and November. Statistical analysis for EPA Appendix III began after the first semi-annual sampling event was collected on October 4, 2017, to determine if a statistically significant increase (SSI) has occurred. If an SSI is verified, additional evaluation is required to determine if the SSI was caused by the CCR impoundment.

The Asbury Power Plant was retired on March 1, 2020, but residual fly ash, bottom ash, and other related wastes were placed in the impoundment area as part of the decommissioning activities. The facility is now known as the Asbury Renewable Operations Center. On April 1, 2021, a Notification of Intent to Close CCR Surface Impoundment was posted to the facility's website and the State Director (MDNR) was notified.

Construction of the final cap of the CCR impoundment began during 2022. Dewatering of the impoundment was occurring during the first part of the year. CCR grading, excavation and relocation activities began in June of 2022.

On November 16, 2022, a semi-annual sampling event was conducted per the EPA CCR Rule (§ 257.90-.98). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. After review of the first semi-annual groundwater sampling event analytical results completed in October 2017, the constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan in accordance with the EPA CCR Rule. For quality assurance and quality control measures, a duplicate sample at MW-5 was taken. These samples were preserved and submitted directly to the laboratory.

This report is a summary of the November 2022 sampling event and the findings of the statistical analysis of the results of the groundwater monitoring program at the Asbury Power Plant CCR Impoundment. Specific information about each sampling event can be obtained from the individual report which is part of the Asbury Operating Record.

2.0 SITE LOCATION

The site occupies the north half of Section 17, Township 30 North, and Range 33 West on the Asbury 7.5-Minute Quadrangle Map as seen in **Figure 1**. The site is located approximately 5.5 miles north-northeast of Asbury, Missouri, about 14 miles north-northwest of Joplin, Missouri. A map showing the locations of the monitoring wells is in **Figure 2**.

2.1 History

In March 1996, five (5) groundwater monitoring wells, MW-1 through MW-5, were installed around the perimeter of the Asbury Power Plant CCR impoundment. Monitoring wells MW-1, MW-2 and MW-3 were installed to a total depth of between 27.0 to 28.5 feet below ground surface (bgs). Monitoring wells MW-4 and MW-5 were installed to a total depth of 48 feet bgs. Each of the five monitoring wells was equipped with 10.0-foot well screens. The five wells were then developed, purged, and sampled in 1996.

In 2003, two (2) additional groundwater monitoring wells were installed and identified as MW-6 and MW-7. Both wells had 2-inch diameter PVC well casings installed to an approximate total depth of 44 feet below ground surface. Both wells were installed with an above ground steel protective cover. No other construction details such as well screen lengths were available for these two (2) wells. In December 2015, two (2) additional groundwater monitoring wells were installed and identified as MW-5A and MW-6A.

All wells are registered with MDNR – Missouri Geological Survey Program.

The Asbury Power Plant was retired on March 1, 2020, but residual fly ash, bottom ash, and other related wastes were placed in the impoundment area as part of the decommissioning activities. The facility is now known as the Asbury Renewable Operations Center. On April 1, 2021, a Notification of Intent to Close CCR Surface Impoundment was posted to the facility's website and the State Director (MDNR) was notified.

Construction of the final cap of the CCR impoundment began during 2022. Dewatering of the impoundment was occurring during the first part of the year. CCR grading, excavation and relocation activities began in June of 2022.

2.2 Site Geology

Drilling and subsurface investigation activities at the Site and as part of the MDNR approved CCR landfill Detailed Site Investigation (DSI) for the adjacent landfill area identified three (3) primary geologic units at the Site. These geologic units include the surficial soil layer, Warner Sandstone (uppermost aquifer), and Riverton Shale (confining unit). The information presented herein includes the primary elements of a site characterization work plan consistent with the MDNR guidance.

<u>Surficial Soil</u>. Soils at the site consist of a surficial unit of cohesive soils (e.g., CL, SC, ML, and CH) underlain by Pennsylvanian-age bedrock. Soil thickness at the Site ranges from approximately 15-25 feet.

<u>Warner Sandstone</u>. The Warner Sandstone (Sandstone) is the uppermost bedrock unit in the south portion of the Site. In the north area of the Site, the Sandstone is overlain by the Riverton Shale (Shale). Based on the DSI information, the Sandstone and Shale can occur as alternating

layers. The Sandstone and Shale are gradational in places and transition from shaley sandstone to sandy shale. According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Warner Sandstone formation is described as follows: "Generally, the lower part is interbedded, very fine-grained sandstone and claystone. The upper part is largely medium bedded to massive channel fill sandstone. In places, the Warner consists primarily of shale and claystone, with only minor amounts of sandstone" and "ranges in thickness from 0 to 15m (49.2 ft.)."

The Sandstone is more than 25-30 feet thick in places and is generally medium hard and thin to medium bedded with occasional shale partings. The degree of induration of the Sandstone varies and generally increases with depth. Slug tests performed at selected DSI piezometers screened in the Sandstone exhibited hydraulic conductivities ranging from approximately 1.3x10-4 cm/sec to 5.9x10-6 cm/sec. The slug test results are consistent with values for sandstone and shaley sandstone. The groundwater gradient is towards the east and Blackberry Creek.

<u>Riverton Shale</u>. Layers of the Riverton Shale (Shale) exhibited thicknesses ranging from approximately one foot to more than 10 feet. The Shale is generally dark gray to light gray. The Shale is mainly thin bedded with hardness ranging from soft to hard. Six packer tests were performed during the DSI to assess the hydraulic conductivity of the Shale. The packer test results ranged from approximately 3.2×10^{-6} cm/sec to 4.9×10^{-8} cm/sec. The packer test data indicates that the Shale is an effective confining unit.

According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Riverton Shale formation is described as "dark gray to black, fine-grained, relatively brittle shale and contains as many as three coal beds, each of which is underlain by underclay" and "varies in thickness from a featheredge to more than 90 feet".

<u>Unnamed Coal</u>. The Shale includes coal seams in places that range in thickness from a few inches to approximately 1.5 feet. The coal is generally black to dark gray.

2.3 Groundwater Monitoring Network Design

The groundwater monitoring system for the CCR impoundment consists of nine (9) groundwater monitoring wells. Two (2) wells are considered upgradient. Two (2) wells are considered sidegradient; one is only monitored for groundwater elevation. The remaining five (5) wells are considered downgradient.

The groundwater monitoring wells (MWs) at the Asbury Power Plant is equipped with individual dedicated poly tubing to be connected to a peristaltic pump/controller at the surface. Low-flow, micro-purge and sampling techniques and technology are utilized to collect groundwater samples from the subject wells. The groundwater sampling procedures are discussed in further detail below.

2.4 Groundwater Monitoring Network

The locations of the monitoring wells are shown in **Figure 2**. The groundwater monitoring system for the site consists of the following monitoring wells:

- MW-1 Sidegradient (water level only)
- MW-2 Upgradient
- MW-3 Upgradient
- MW-4 Downgradient

- MW-5 Downgradient
- MW-5A Downgradient
- MW-6 Downgradient
- MW-6A Downgradient
- MW-7 Sidegradient

2.5 Seasonal Variation

Historical groundwater elevation data has been limited. However, adequate lengths of well screen have been utilized during the construction of the wells to accommodate typical seasonal groundwater elevation variations seen in southwest Missouri.

2.6 Groundwater Flow Direction

Historically, the seasonally high potentiometric surface indicated the groundwater flow direction to the east. **Figure 3** is a potentiometric map for this sampling event.

Originally MW-7 was thought to be a downgradient well but review of the potentiometric mapping from the eight background sampling events revealed that the well is a sidegradient well. Therefore, the designation for MW-7 has been changed from a downgradient to a sidegradient well for compliance monitoring.

3.0 BASELINE GROUNDWATER DATA

3.1 Baseline Data Collection

Per EPA CCR Rule § 257.94(b), the site initiated the detection monitoring program in January 2016 to include obtaining a minimum of eight (8) independent samples for each background and downgradient well. The eight (8) independent groundwater samples were obtained and analyzed as required by the CCR Rule per the baseline groundwater monitoring plan. Background groundwater data was collected from January 2016 to August 2017.

Groundwater Monitoring Reports were completed for each sampling event and have been placed in the Operating Record. Summary tables of the results from each event are included in **Appendix 2**. A listing of each event is below:

- January 2016
- March 2016
- May 2016
- August 2016
- October 2016
- March 2017
- June 2017
- August 2017

Initial baseline monitoring was required at all monitoring wells. The sampling frequency was quarterly or more frequently for the first two (2) years. After the background data plus the first semi-annual sampling events, a reduced lower sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will be completed during the months of April/May/June and October/November/December.

The initial two (2) years of baseline and the first semi-annual detection monitoring included parameters listed in Appendix III and Appendix IV of the EPA CCR Rule. The constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan after review of the first semi-annual groundwater sampling event analytical results in January 2018, according to the EPA CCR Rule. **Appendix 2** contains the list of constituents.

3.2 Background Data Analysis

Sanitas[™] for Ground Water Version 9.2.13 was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. The background data consisted of eight sampling events between January 2016 and August 2017 for both the Appendix III and IV constituents. Eight background events are needed for statistical analysis. An analysis of the Appendix III background data was conducted and is included in **Appendix 5**. Trending was found in Boron (MW-3) and Total Dissolved Solids (MW-3). MW-3 is an up-gradient well. Trending was not removed at that time; otherwise, the site would be below the minimum of eight background samples needed to run statistics.

Four more sets of background data were available to add to the background data set for the November 2019 sampling event and then four more sets for the November 2021 sampling event. The analysis of the additional data for the background data sets was conducted and is included in **Appendix 5**. No trending was found in any of the additional sets of data, so they were added to the baseline data set to increase the statistical power of the background data.

4.0 GROUNDWATER SAMPLING EVENT

On November 16, 2022, eight (8) groundwater monitoring wells were sampled by Midwest Environmental Consultants (MEC) for the EPA CCR Rule Appendix III parameters. For quality assurance and quality control measures, a duplicate sample was taken at MW-5. The sampling protocol and methodology was to be conducted in accordance to the facility's Sampling and Analysis Plan. **Table 1** provides a list of the analytical methods employed by the subcontracted laboratory.

Table 1 – Analytical Methods								
Method	Description							
9056A	Anions, Ion Chromatography							
6020A	Metals (ICP/MS)							
SM 2540C	Solids, Total Dissolved (TDS)							
Field Sampling	Field Sampling							

Appendix 3 includes Monitoring Well Field Inspection sheets and field notes. The physical integrity of the wells was good. During sample collection each of the wells was monitored for pump discharge and formation recharge. Initially, a static water level for each well was recorded (Table 2). To ensure sufficient recharge while sampling, static water levels were collected during pumping. Prior to sample collection, field parameters for each well were measured with a flow-through meter. When the field parameters stabilized, samples for analytical testing were collected and placed on ice for hand delivery to the laboratory. At the conclusion of sample collection from each well, a final static water level measurement was obtained. The samples were collected in the appropriately pre-preserved sample containers and placed on ice for delivery.

Table 2 - Groundwater Sampling Field Parameters Summary During November 2022 Sampling Event										
WELL	STATIC WA	гос)	PURGE RATE (mL/min)	STABILIZED pH						
D 414/ 4 *	Initial	Final		·						
MW-1*	9.72	NA	NA	NA						
MW-2	3.76	6.43	200	6.70						
MW-3	3.57	3.64	200	6.06						
MW-4	8.39	13.98	200	7.03						
MW-5	1.31	11.17	200	7.60						
MW-5A	11.22	20.88	200	6.83						
MW-6	10.66	19.86	200	7.01						
MW-6A	9.40	18.30	200	6.69						
MW-7	6.42	6.50	200	6.45						

^{*} Water Level Only NA – Not Applicable NT – Not Tested

Appendix 4 includes the initial analytical results for the sampling event. Included with this analytical report are sample information; chain of custody; wet chemistry data; and volatile data.

5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA

Midwest Environmental Consultants receives Data Packages from the analytical laboratory (Test America). The internal quality control/quality assurance case narratives and reported data are then reviewed. Generally, the data validation procedures established by the U.S. Environmental Protection Agency *Contract Laboratory Program Functional Guidelines for Organic Data Review* and *Functional Guidelines for Inorganic Data Review* is followed. These guidelines are used to assign data qualifiers to the data. A formal data validation report for the site is not prepared; however, any significant issues are noted in the groundwater monitoring report.

MEC evaluates the data set for precision, accuracy, representativeness, comparability, and completeness (PARCC).

5.1 Precision

<u>Laboratory Precision</u>. Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability.

<u>Field Precision.</u> Analyses of duplicate samples are used to define the total variability (replicability) of the sampling/analytical system. Field replicates are collected at a rate of one per sampling event.

5.2 Accuracy

Accuracy is determined by calculating the percent recoveries for analyses of surrogate compounds, LCSs, continuing calibration check standards, and matrix spike samples. Acceptable percent recoveries are established for SW-846 and EPA methods. Field and laboratory blank analysis are also used to address measurement bias.

<u>Field Blanks.</u> Field blanks consisted of a trip blank and a field blank. One trip blank per cooler accompanies samples for volatile organic analyses.

<u>Laboratory Blanks.</u> Method blanks, artificial, matrix-less samples, are analyzed to monitor the laboratory analysis system for interferences and contamination from glassware, reagents, etc. Method blanks are taken through the entire sample preparation process. They are included with each batch of extractions or digestion prepared, or with each 20 samples, whichever is more frequent.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflects site condition. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field replicate samples, and reviewing the results of field blanks. Field notes are reviewed as part of our data validation process.

5.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

5.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form. Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria were met.

6.0 STATISTICAL ANALYSIS

6.1 Sampling Results

The constituents with results above the laboratory reporting limits are included in **Table 3**. The Test America laboratory analytical results are included in **Appendix 4**.

	Table 3 – Constituents During November 2022 Sampling Event													
Constituent	Units	MCL	MW-2 (up)	MW-3 (up)	MW-4 (down)	MW-5 (down)	MW-5A (down)	MW-6 (down)	MW-6A (down)	MW-7 (side)				
Appendix III														
Boron	mg/L	NA	0.13	<0.08J	<0.08	0.29	2	0.43	0.45	0.29				
Calcium	mg/L	NA	37	99	280	79	420	270	230	500				
Chloride	mg/L	NA	110	62	4.4	6	150	15	37	49				
Fluoride	mg/L	4.0	0.44	0.16	<0.25	0.25	<0.25J	<0.25J	0.41	<0.25J				
рН	SU	NA	6.7	6.06	7.03	7.6	6.83	7.01	6.69	6.45				
Sulfate	mg/L	NA	49	480	500	140	1600	970	910	1700				
Total Dissolved Solids	mg/L	NA	380	920	1400	550	3000	1800	1800	2800				

NA = Not Applicable

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event.

6.2 Statistical Analysis

The November 2019 sampling event report indicated confirmed intrawell prediction limits exceedances. Intrawell prediction limits were utilized per the facility's 2018 Groundwater Statistical Analysis Plan. The Annual Report recommending the site move into assessment monitoring was stamped on January 23, 2020 and submitted to the facility. However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. **Appendix 1** contains the MDNR/EPA correspondence.

Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from background wells, which include upgradient and sidegradient wells per EPA Unified Guidance definitions, and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. To appropriately characterize the groundwater beneath the site, the statistical methods utilized at the facility consider the following facts as they relate to site:

- Potential differences in geochemical characteristics of the groundwater caused by the differing lithologies in contact with the screened interval from well to well.
- Potential impacts of surface infiltration into the groundwater environment.

Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. Municipal and demolition waste landfills in Missouri typically utilize intrawell prediction limits per MDNR. However, it was noted that the power curve for these analyses was not considered strong yet. The data set consisted of only 13 sampling events from

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

January 2016 to November 2019. EPA Unified Guidance recommends 20 or more sampling events for background data for intrawell prediction limits. A small data set triggers an SSI when there is even a slight increase in concentration. Sanitas also note to each exceedance "Insufficient data to test for seasonality: data were not deseasonalized." Minor increases in concentration noted in the May and November 2019 sampling events did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

The EPA Unified Guidance Chapter 5.2.3 states "In groundwater data collection and testing, background conditions may not be static over time. Caution should be observed in removing observations which may signal a change in natural groundwater quality. Even when conditions have not changed, an apparently extreme measurement may represent nothing more than a portion of the background distribution that has yet to be observed. This is particularly true if the background data set contains fewer than 20 samples." Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

MDNR made several requests per EPA in the correspondence located in **Appendix 1** which included the EPA review of the groundwater reports as seen in **Table 4**.

	Table 4 – EPA Review of Groundwater Reports
Facility	Asbury Power Plant
Location	Asbury, MO
Owner	Empire District Electric Company
Units	Upper Pond-unlined, South Pond-unlined, Lower Pond-unlined
Geology	Surficial unit of clay, clayey sand, and silt approximately 15 to 25 feet thick underlain by Warner Sandstone approximately 25-30 feet thick in the southern portion of the site and the Riverton Shale in the northern area of the site
Problematic Use of Intra Well Comparisons	Analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells. Consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra well analysis
Problematic Alternate Source Determination	
Conclusions	While there are no boring logs in the documents to confirm that the wells are screened in the same geologic unit, consistency in the field parameters and the description of the geology suggest that the wells are screened in the sandstone. The analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells, consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra wells analyses

Sanitas[™] for Ground Water Version 9.6.25 was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. Interwell prediction intervals were run per EPA's request. The Sanitas[™] output is included in **Appendix 5**.

Statistical analysis was performed on the Appendix III constituents from the sampling event compared to the updated background dataset. Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from upgradient background wells and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. However, EPA has requested the site utilize interwell prediction limits.

Statistical analysis results are presented below for those constituents determined to have exceeded a prediction limit. However, EPA's "Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities," March 2009, EPA 530/R-09-007 is referenced multiple times in the preamble of the EPA CCR regulations for groundwater sampling and analysis requirements. According to the EPA Unified Guidance, a prediction limit exceedance is not considered a statistically significant increase (SSI) until it is confirmed through retesting. SSIs generated by non-detectable results or with less than eight background events are considered statistically invalid.

Table 5 lists the parameters with exceedances of prediction limits during the sampling event, the associated monitoring wells, if the exceedance is initial versus confirmed, the predicted limit, the measured concentration, and the MCL set forth in the National Drinking Water Regulations. The MCL is the highest level of a contaminant that is allowed in drinking water.

Table 5 – Interwell Prediction Limit Exceedances Observed During November 2022 Sampling Event										
Constituent Monitoring Initial vs. Predicted Measured Drinking Confirmed Limit Concentration Water MCLs										
Boron (mg/L)	MW-5A	Confirmed	0.9	2.0	NA					
pH* (SU)	MW-5	Confirmed	7.05	7.60	NA					

NA = Not Applicable

6.3 Results Interpretation

There was no initial interwell prediction limit exceedances for the listed monitoring well during November 2022 sampling event. During the November 2022 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the May 2023 sampling event.

It was noted during sampling that water levels were significantly lower than normally seen due to drought conditions. The drought should be considered excessive. Governor Mike Parson declared at state of emergency in Missouri for drought conditions on July 21, 2022. **Table 6** shows the drop in elevation between the May 2022 and November 2022 sampling events.

^{*}Field Sampled (less precise but within the required hold time)

	Table 6 - Groundwater Sampling Comparison										
WELL ID					DIFFERENCE IN INTIAL LEVELS (ft-BTOC)						
MW-1*	9.72	NA	5.41	NA	4.31						
MW-2	3.76	6.43	3.07	4.87	0.69						
MW-3	3.57	3.64	0.5	0.7	3.07						
MW-4	8.39	13.98	5.83	12.93	2.56						
MW-5	1.31	11.17	1.82	13.39	-0.51						
MW-5A	11.22	20.88	9.50	19.43	1.72						
MW-6	10.66	19.86	8.86	18.07	1.8						
MW-6A	9.40	9.40 18.30		18.20	1.47						
MW-7	6.42	6.50	3.15	3.32	3.27						

The results of the interwell prediction limit statistical analysis of the November 2020, May 2021, November 2021, May 2022, and November 2022 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct.

Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

Below is a discussion of the previous results for comparison.

May 2022

There was no initial interwell prediction limit exceedances for the listed monitoring well during May 2022 sampling event. During the May 2022 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5, MW-6 and MW-6A) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the November 2022 sampling event. The results of the interwell prediction limit statistical analysis of the November 2020, May 2021,

November 2021, and May 2022 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

November 2021

There was no initial interwell prediction limit exceedances for the listed monitoring well during November 2021 sampling event. During the November 2021 sampling event, interwell prediction exceedances in boron (MW-5A) and pH (MW-5, MW-6 and MW-6A) were confirmed. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility will resample as part of the May 2022 sampling event. The results of the interwell prediction limit statistical analysis of the November 2020, May 2021 and November 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

May 2021

There was no initial interwell prediction limit exceedances for the listed monitoring well during May 2021 sampling event. During the November 2020 sampling event, Initial interwell prediction exceedances in pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) were noted. However, the initial prediction limit exceedance of total dissolved solids (MW-5A) was not confirmed during the May 2020 sampling event. There are no current primary (health based) MCLs for pH, but the confirmed pH results are still within the acceptable range of 6.5 to 9 SU. The facility plans to resample as part of the November 2021 sampling event. The results of the interwell prediction limit statistical analysis of the November 2020 and May 2021 sampling events

indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater. The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct. Based upon these findings the site did not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

November 2020

The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed exceedance for Boron (MW-5A). Boron does not have a MCL. The facility will conduct an alternative source demonstration in the next 90 days per the EPA CCR Rule (§ 257.94). The results for pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) indicated initial interwell prediction limit exceedances for the listed monitoring well during November 2020 sampling event. There are no current primary (health based) MCLs for pH or total dissolved solids. The facility plans to resample as part of the May 2021 sampling event. During the May 2020 sampling event, Initial interwell prediction exceedances in boron (MW-5A and MW-6A) and fluoride (MW-5A) were noted. However, the initial prediction limit exceedances of boron (MW-6A) and fluoride (MW-5A) were not confirmed during the November 2020 sampling event.

May 2020

The results of the EPA requested interwell prediction limit statistical analysis of the May 2020 sampling event indicate that the site is in compliance. The results for boron (MW-5A and MW-6A) and fluoride (MW-5A) indicated an initial interwell prediction limit exceedance for the listed monitoring well during May 2020 sampling event. There is a current primary (health based) MCL for fluoride of 4.0 mg/L but the result is below the limit. Boron does not have a MCL but does have an EPA proposed groundwater protection standard of 4.0 mg/L but all results were below that limit. Trending was found to be significant for boron (MW-5A) but not significant in boron (MW-6A) and fluoride (MW-5A). Boron is also trending upward in MW-2 which is an up-gradient well. The facility plans to resample as part of the November 2020 sampling event. During the November 2019 sampling event, Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted. However, these initial prediction limit exceedances were not confirmed during the May 2020 sampling event.

November 2019

The result for Chloride (MW-5A), pH (MW-4) and Sulfate (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2019 sampling event. There is no current primary (health based) MCL for chloride, pH, or sulfate. During May 2019, the result for Boron (MW-5A) indicated an initial intrawell prediction limit exceedance and

Total Dissolved Solids (MW-5A) indicated a confirmed intrawell prediction limit exceedance. There is no current primary (health based) MCL for boron and total dissolved solids. These prediction limit exceedances were confirmed during the November 2019 sampling event. A resample of MW-5A was conducted on December 11, 2019. The results of the resampling confirmed the exceedances and the site planned to move into assessment monitoring. However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. **Appendix 1** contains the MDNR/EPA correspondence. The results of the EPA requested interwell prediction limit statistical analysis of the November 2019 sampling event indicate that the site is in compliance. Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted but have not been confirmed. There is no current primary (health based) Maximum Contamination Level (MCL) for pH. Trending was not found to be significant for pH in any well during the analysis of the background data set.

May 2019

The result for Boron (MW-5A) and pH (MW-3(u), MW-5A, MW-6 and MW-6A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the May 2019 sampling event. There is no current primary (health based) MCL boron or pH. The facility plans to resample as part of the November 2019 sampling event. During November 2018, the result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance. There is no current primary (health based) MCL for total dissolved solids. This initial prediction limit exceedances were confirmed during the May 2019 sampling event. However, it should be noted that the power curve for these analyses is not considered strong. A small data set triggers an SSI when there is even a slight increase in concentration. The EPA Unified Guidance Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated. It was also noted that higher levels of total dissolved solids were seen in the side-gradient well MW-7 demonstrating that there was likely not a release from the facility. Therefore, the site will continue with detection monitoring on a semi-annual basis at this time.

November 2018

The result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2018 sampling event. There is no current primary (health based) MCL for total dissolved solids. The facility plans to resample MW-5A for Total Dissolved Solids as part of the May 2019 sampling event. During May 2018, no intrawell prediction limits were exceeded. Therefore, there were no initial prediction limit exceedances to confirm during the November 2018 sampling event.

May 2018

No intrawell prediction limits were exceeded during the May 2018 sampling event. The October 2017 results for Total Dissolved Solids (MW-7) indicated an exceedance of the predicted limit for the listed monitoring wells. However, this initial prediction limit exceedance was not confirmed during the May 2018 sampling event.

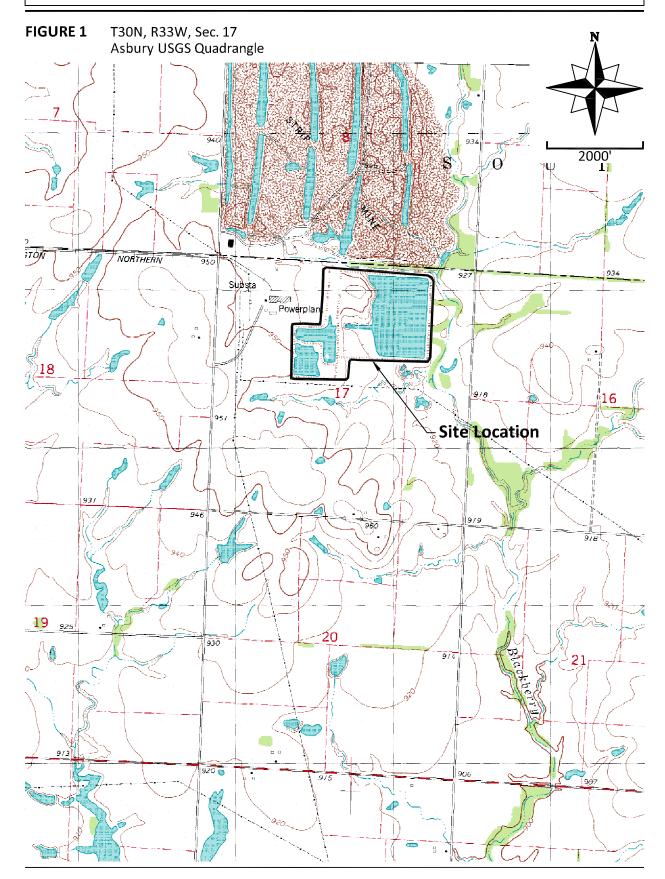
October 2017

The result for Total Dissolved Solids (MW-7) indicated an initial intrawell prediction limit exceedance for the listed monitoring wells during the October 2017 sampling event. However, the result was below the tolerance limit. There is no current primary (health based) MCL for total dissolved solids. Review of the Total Dissolved Solids in the duplicate sample taken from the same well (MW-7) shows a result of 3,000 mg/L, which would not be an exceedance of the intrawell prediction limit of 3,069 mg/L. Due to the variances between the sample and the duplicate, the site will re-evaluate MW-7 for Total Dissolved Solids during the next sampling event. MW-7 is considered a sidegradient well, therefore no further action is needed for exceedances in sidegradient or upgradient wells.

6.4 Proposed Actions

Statistical analysis will continue to be completed with interwell prediction limits per EPA's request. The results of the EPA requested interwell prediction limit statistical analysis of the November 2020, May 2021 and November 2021 sampling events indicate a confirmed exceedance for Boron (MW-5A). EPA CCR Rule 40 CFR § 257.94(e)(2) allows an Alternative Source Demonstration (ASD) that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality for a constituent found in a monitoring well. This ASD was completed in April 2021 and placed in the operating record. The ASD found the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality instead of a release to groundwater.

The ASD theorizes that this SSI is an issue with the location of the well rather than from a release from the facility. This alternative source demonstration confirms that MW-5A may be impacted by its placement upgradient of a historic dewatering trench and cutoff trench. The ASD proposes a replacement well for MW-5A be installed downgradient of the dewatering trench and cutoff trench system. The new replacement well will be monitored and compared to the existing MW-5A to determine if the theory is correct.


Based upon these findings the site does not need to move into the assessment monitoring program at this time and will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis.

FIGURES

Asbury Generating Station CCR Impoundment Groundwater Sampling Event - November 2022 Site Location Map

Asbury Generating Station CCR Impoundment Groundwater Sampling Event - November 2022 Groundwater Monitoring System

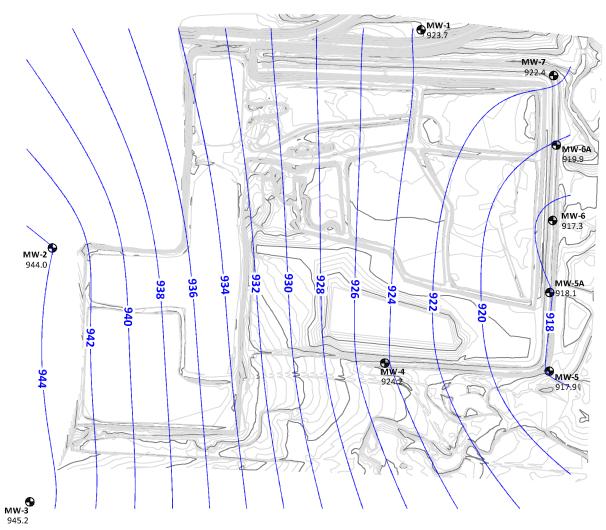
FIGURE 2

Well ID	Northing	Easting
MW-1	435791.18 *	2765165.35 *
MW-2	434428.46	2762861.37
MW-3	432842.77	2762720.80
MW-4	433709.99	2764938.99
MW-5	433659.27	2765966.23
MW-5A	434150.04	2765969.78
MW-6	434600.46	2765987.98
MW-6A	435071.44	2766010.46
MW-7	435505.42	2765993.13

^{*} Coordinate location is approximate

Legend

Monitoring Well



Asbury Generating Station CCR Impoundment

Groundwater Sampling Event - November 2022 Groundwater Piezometric Surface Map

FIGURE 3

Well ID	Northing	Northing Easting T		Static Water Level (BTOC)	Static Water Level
MW-1	435791.18	2765165.35	933.4	9.7	923.7
MW-2	434428.46	2762861.37	947.8	3.8	944.0
MW-3	432842.77	2762720.80	948.8	3.6	945.2
MW-4	433709.99	2764938.99	932.6	8.4	924.2
MW-5	433659.27	2765966.23	919.2	1.3	917.9
MW-5A	434150.04	2765969.78	929.3	11.2	918.1
MW-6	434600.46	2765987.98	928.0	10.7	917.3
MW-6A	435071.44	2766010.46	929.3	9.4	919.9
MW-7	435505.42	2765993.13	928.8	6.4	922.4

Legend

Monitoring Well

APPENDIX 1

EPA/MDNR Correspondence

Missouri Department of

dnr.mo.gov

NATURAL RESOURCES

Eric R. Greitens, Governor

Carol S. Comer, Director

NOV 0.2 2017

Mr. Kavan Stull, Senior Environmental Coordinator Empire District 602 South Joplin Avenue Joplin, MO 64802

RE: Site Characterization Workplan

Dear Mr. Stull:

The Missouri Department of Natural Resources has reviewed the document "Site Characterization Workplan" dated May 16, 2017. The site has undergone extensive characterization regarding construction of a coal combustion residual (CCR) landfill near the CCR impoundments. The department's Water Protection Program has determined, through consulting with the Missouri Geological Survey, this characterization is sufficient and may be used in whole to complete the required monitoring of the sub-surface conditions at the site. Additional submittal of site characterization is not necessary, as the previous submittal meets the requirement for special condition 19(b) of the Missouri State Operating Permit MO-0095362. The facility may proceed with the next step laid out in the permit; special condition 19(c). Enclosed is the Missouri Geological Survey concurrence.

If you were adversely affected by this decision, you may be entitled to an appeal before the Administrative Hearing Commission (AHC) pursuant to 10 CSR 20 1.020 and Section 621.250, RSMo. To appeal, you must file a petition with the AHC within 30 days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed; if it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the AHC. Contact information for the AHC is by mail at Administrative Hearing Commission, United States Post Office Building, Third Floor, 131 West High Street, P.O. Box 1557, Jefferson City, MO 65102, by phone at 573-751-2422, by fax at 573-751-5018, and by website at www.oa.mo.gov/ahc.

Mr. Kavan Stull Page 2

If you have any questions, please do not hesitate to contact Ms. Pam Hackler by mail at Department of Natural Resources, Water Protection Program, P.O. Box 176, Jefferson City, MO 65102-0176, by phone at 573-526-3386; or by email at pam.hackler@dnr.mo.gov. Thank you.

Sincerely,

WATER PROTECTION PROGRAM

Michael J. Abbott, Chief Operating Permits Section

MJA/php

Enclosure

c: Mr. Randall Willoughby, Southwest Regional Office

MEMORANDUM

DATE:

October 18, 2017

SWR18011 Jasper County

TO:

Pam Hackler- WPP- Industrial Wastewater Unit

FROM:

Fletcher N. Bone, Geologist, Environmental Geology Section, Geological Survey Program,

MGS

SUBJECT:

Site characterization for existing CCR

impoundments

Asbury Power Plant Site Characterization Work

Plan- CCR

37 21 22.66 Latitude, -94 35 4.79 Longitude,

Jasper County, Missouri

October 18, 2017

The Missouri Geological Survey (MGS) has reviewed the documents titled, 'NPDES Permit MO-0095362 Asbury Power Plant, Jasper County, Missouri, Site Characterization Work Plan', prepared by Empire District Electric Company, dated September 8, 2017 and 'Site Characterization Work Plan, Coal Combustion Residuals Impoundments, Empire Electric Facility - Permit MO-0095362, Jasper County, Missouri, Geotechnology Project No. J021738.03', prepared by Geotechnology Inc., dated May 16, 2017. The MGS offers the following comment.

General Comment:

The MGS agrees that the existing Coal Combustion Residuals (CCR) impoundments (site 1) do not need further site characterization, at this time. The site characterization performed, as described in the Detailed Site Investigation Report (DSI), dated January 21, 2015, at the proposed CCR impoundment (site 2) that is approximately 1,000 feet south of the existing CCR impoundments (site 1), coupled with the geologic and hydrologic data provided that pertains to the existing CCR impoundments (site 1) (1996 to present data), provides adequate characterization of the geology and hydrology of the site 1. The geologic and hydrologic settings of both sites are similar, with geologic boring logs and potentiometric data of both sites being compared. The hydraulic conductivity testing conducted at the proposed CCR site (site 2) has demonstrated that there is a low potential for groundwater contamination for this area.

If you are in need of further assistance from our office or have questions regarding this evaluation please feel free to contact me at (573) 368-2161.

APPENDIX 2

Baseline Sampling Information

EPA CCR Rule

Appendix III to Part 257—Constituents for Detection Monitoring

Boron

Calcium

Chloride

Fluoride

рΗ

Sulfate

Total Dissolved Solids (TDS)

Appendix IV to Part 257—Constituents for Assessment Monitoring

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt

Lead

Lithium

Mercury

Molybdenum

Selenium

Thallium

Radium 226 and 228 combined

1st Baseline Event – January 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7	
Appendix III											
Boron	mg/L	NA	0.33	<0.5 J	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	
Calcium	mg/L	NA	57	74	220	84	200	250	140	570	
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38	
Fluoride	mg/L	4	0.43	0.47	0.31	0.28	0.30	0.24	0.35	<0.2 J	
рН	SU	NA	6.33	5.81	6.31	7.33	7.09	6.97	7.09	6.51	
Sulfate	mg/L	NA	260	360	1100	140	800	1000	600	1800	
Total Dissolved Solids	mg/L	NA	690	790	1900	590	1500	1800	1300	2800	
				Append	lix IV						
Antimony	mg/L	0.006	<0.002	<0.002 J							
Arsenic	mg/L	0.01	<0.002 J	0.01	<0.01 J	<0.02 J	<0.01	<0.01	<0.01	<0.01	
Barium	mg/L	2	0.044	0.0099	0.065	0.086	0.036	0.02	0.042	0.011	
Beryllium	mg/L	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Chromium	mg/L	0.1	<0.002 J	<0.002 J	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.01	<0.01	
Cobalt	mg/L	NA	<0.01 J	<0.01 J	0.046	<0.002 J	0.018	0.0022	0.02	0.014	
Lead	mg/L	0.015	<0.002 J	<0.002	<0.01 J	<0.002 J	<0.002	<0.002	<0.002	<0.002 J	
Lithium	mg/L	NA	0.057	0.15	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002 J	<0.002 J	<0.01 J	<0.002	<0.01 J	<0.002	
Selenium	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
Combined Radium	pCi/L	5	<0.477 J	<0.427 J	<2.08	<0.563 J	<0.392 J	<0.446 J	<0.306 J	<0.279 J	

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

2nd Baseline Event – March 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7			
	Appendix III												
Boron	mg/L	NA	0.90	0.060	<0.25	0.29	0.29	0.34	0.34	0.29			
Calcium	mg/L	NA	120	92	260	94	190	250	160	620			
Chloride	mg/L	NA	180	70	15	4.4	23	9.0	36	34			
Fluoride	mg/L	4	0.28	0.28	0.10	0.38	0.31	0.23	0.31	0.16			
рН	SU	NA	5.82	5.68	6.72	7.15	6.94	6.79	6.98	6.22			
Sulfate	mg/L	NA	570	400	570	140	710	970	550	1800			
Total Dissolved Solids	mg/L	NA	1300	840	1600	590	1500	1800	1200	2900			
				Append	lix IV								
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002 J	<0.002	<0.002 J	<0.002			
Arsenic	mg/L	0.01	<0.002 J	0.024	0.0038	<0.002 J	0.0038	0.0026	0.0025	0.004			
Barium	mg/L	2	0.060	0.012	0.034	0.047	0.042	0.026	0.051	0.0089			
Beryllium	mg/L	0.004	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002			
Cadmium	mg/L	0.005	0.0028	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
Chromium	mg/L	0.1	<0.002	<0.002 J	0.0034	<0.002	<0.002	<0.002	<0.002	<0.002			
Cobalt	mg/L	NA	0.017	0.0095	0.021	<0.002 J	0.02	0.0061	0.0063	0.016			
Lead	mg/L	0.015	<0.002 J	<0.002 J	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002			
Lithium	mg/L	NA	0.20	0.15	0.074	0.074	0.14	0.22	0.14	0.30			
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002			
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002	<0.002 J	0.0041	<0.002 J	0.0038	<0.002			
Selenium	mg/L	0.05	<0.002	<0.002	<0.002	0.0021	0.0028	0.0031	0.0031	<0.002			
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002			
Combined Radium	pCi/L	5	<0.337 J	<0.389 J	<0.84 J	<0.315 J	<0.336 J	<0.319 J	<0.348 J	<0.329 J			

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

3rd Baseline Event – May 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7			
	Appendix III												
Boron	mg/L	NA	0.21	0.044	0.027	0.24	0.26	0.25	0.23	0.29			
Calcium	mg/L	NA	130	100	91	5	59	11	90	36			
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38			
Fluoride	mg/L	4	0.28	0.27	0.22	0.55	0.35	0.26	0.43	0.18			
рН	SU	NA	5.30	4.37	5.97	6.43	6.60	6.51	6.64	5.82			
Sulfate	mg/L	NA	160	540	820	150	920	1400	620	2400			
Total Dissolved Solids	mg/L	NA	500	800	1700	590	1500	1800	1100	2900			
				Append	lix IV								
Antimony	mg/L	0.006	<0.002 J										
Arsenic	mg/L	0.01	0.0013	0.027	0.01	0.0043	0.01	0.007	0.0037	0.0082			
Barium	mg/L	2	0.021	0.01	0.025	0.045	0.037	0.041	0.04	0.021			
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001			
Cadmium	mg/L	0.005	0.0011	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001			
Chromium	mg/L	0.1	<0.002 J	<0.002 J	0.0025	<0.002 J							
Cobalt	mg/L	NA	0.0072	0.0073	0.0071	<0.0005J	0.00081	0.0035	<0.0005J	0.0037			
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001 J			
Lithium	mg/L	NA	<0.05 J	0.15	<0.05 J	0.074	0.16	0.31	0.12	0.22			
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002			
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0052	<0.005	<0.005			
Selenium	mg/L	0.05	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005 J	<0.005	<0.005			
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001			
Combined Radium	pCi/L	5	<0.355	<0.427 J	<0.386 J	<0.402 J	<0.377 J	<0.357 J	<0.334 J	<0.333 J			

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

4th Baseline Event – August 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7		
Appendix III												
Boron	mg/L	NA	0.19	0.057	0.067	0.27	0.27	0.29	0.27	0.22		
Calcium	mg/L	NA	38	79	110	74	180	220	130	430		
Chloride	mg/L	NA	120	77	35	6	35	12	65	49		
Fluoride	mg/L	4	0.25	0.15	0.3	0.26	0.31	0.23	0.37	0.22		
рН	SU	NA	6.04	5.73	7	7.17	7.04	6.88	7.14	6.29		
Sulfate	mg/L	NA	<0.005 J	<0.005	<0.005 J	<0.005 J						
Total Dissolved Solids	mg/L	NA	460	850	730	540	1500	1800	1100	2900		
Appendix IV												
Antimony	mg/L	0.006	<0.002 J									
Arsenic	mg/L	0.01	<0.001 J	0.013	<0.001 J	<0.001 J	0.001	<0.001 J	<0.001 J	<0.001 J		
Barium	mg/L	2	0.023	<0.01 J	0.012	0.035	0.031	0.014	0.037	<0.01 J		
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002		
Cobalt	mg/L	NA	0.0052	0.0088	0.0038	<0.0005J	0.00075	<0.0005J	<0.0005J	0.015		
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001		
Lithium	mg/L	NA	<0.05 J	0.16	<0.05 J	0.078	0.16	0.22	0.11	0.34		
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	<0.005	0.0067	<0.005		
Selenium	mg/L	0.05	<0.005 J	<0.005	<0.005 J	<0.005 J						
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Combined Radium	pCi/L	5	<0.424 J	<0.465 J	<0.833	<0.441 J	<0.435 J	<0.45 J	<0.484 J	<0.418 J		

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

5th Baseline Event – October 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7		
Appendix III												
Boron	mg/L	NA	0.2	0.053	0.047	0.24	0.33	0.34	0.31	0.26		
Calcium	mg/L	NA	43	91	100	94	220	260	130	490		
Chloride	mg/L	NA	130	65	74	6	29	13	65	56		
Fluoride	mg/L	4	0.28	0.18	0.28	0.31	0.39	0.25	0.41	0.28		
рН	SU	NA	6.59	5.95	7.21	7.51	8.00	6.98	7.85	6.75		
Sulfate	mg/L	NA	99	470	120	120	1100	1100	570	1400		
Total Dissolved Solids	mg/L	NA	460	850	580	570	1500	1700	1100	2800		
				Append	lix IV							
Antimony	mg/L	0.006	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002 J	<0.002		
Arsenic	mg/L	0.01	<0.001	0.014	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001 J	<0.001 J		
Barium	mg/L	2	0.028	<0.01 J	0.02	0.03	0.033	0.013	0.037	<0.01 J		
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002		
Cobalt	mg/L	NA	0.0051	0.0095	0.0013	0.00073	0.0072	<0.0005J	<0.0005J	0.014		
Lead	mg/L	0.015	<0.001 J	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001		
Lithium	mg/L	NA	<0.05 J	0.17	<0.05	0.078	0.17	0.24	0.12	0.32		
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0066	<0.005	<0.005		
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005J	<0.005		
Thallium	mg/L	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Combined Radium	pCi/L	5	<0.436J	<0.478J	<0.535J	<0.503J	<0.498J	<0.464J	<0.453J	<0.424J		

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

6th Baseline Event – March 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7		
Appendix III												
Boron	mg/L	NA	0.22	0.052	0.057	0.23	0.29	0.33	0.36	0.26		
Calcium	mg/L	NA	38	93	250	86	200	260	170	500		
Chloride	mg/L	NA	130	52	19	5.3	29	11	19	39		
Fluoride	mg/L	4	0.21	0.12	<0.1 J	0.29	0.29	0.19	0.3	0.12		
рН	SU	NA	6.07	5.84	6.67	7.32	7.38	7.15	7.21	6.40		
Sulfate	mg/L	NA	130	540	630	150	1100	1000	720	1900		
Total Dissolved Solids	mg/L	NA	500	940	1600	620	1700	1900	1400	3000		
				Append	lix IV							
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		
Arsenic	mg/L	0.01	<0.001	0.037	0.0022	0.0013	0.0014	<0.001 J	0.0043	<0.001 J		
Barium	mg/L	2	0.021	0.011	0.021	0.033	0.026	0.015	0.027	<0.01 J		
Beryllium	mg/L	0.004	<0.001 J	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 J		
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Chromium	mg/L	0.1	<0.002 J									
Cobalt	mg/L	NA	0.0071	0.0097	0.0096	<0.0005J	0.0022	0.0024	0.0017	0.014		
Lead	mg/L	0.015	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001		
Lithium	mg/L	NA	<0.05 J	0.17	0.072	0.076	0.16	0.23	0.14	0.32		
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Molybdenum	mg/L	NA	<0.005 J	<0.005 J	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005		
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
Thallium	mg/L	0.002	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Combined Radium	pCi/L	5	0.575	1.63	0.287	1.50	0.803	2.68	1.73	1.62		

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

7th Baseline Event – June 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7		
Appendix III												
Boron	mg/L	NA	<0.08J	<0.08J	0.034	0.27	0.31	0.37	0.36	0.26		
Calcium	mg/L	NA	42	100	300	89	200	260	160	470		
Chloride	mg/L	NA	130	54	110	5.4	23	12	26	48		
Fluoride	mg/L	4	0.43	0.19	0.18	0.35	0.42	0.3	0.42	0.21		
рН	SU	NA	6.35	5.78	6.62	7.22	7.04	6.93	7.09	6.41		
Sulfate	mg/L	NA	78	650	1400	180	940	1300	780	2400		
Total Dissolved Solids	mg/L	NA	450	950	2000	610	1600	1800	1400	2900		
Appendix IV												
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		
Arsenic	mg/L	0.01	<0.001J	0.1	0.0032	<0.001J	0.0037	<0.001	0.0018	<0.001		
Barium	mg/L	2	0.03	0.016	0.048	0.04	0.026	0.017	0.025	<0.01J		
Beryllium	mg/L	0.004	<0.001	0.0031	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001		
Chromium	mg/L	0.1	<0.002	<0.002	<0.002J	<0.002	<0.002	<0.002	<0.002	<0.002		
Cobalt	mg/L	NA	0.004	0.0088	0.0042	<0.0005J	0.0045	0.00087	0.0059	0.0015		
Lead	mg/L	0.015	0.0033	0.001	0.0074	<0.001	<0.001	<0.001	<0.001	<0.001		
Lithium	mg/L	NA	<0.05J	0.18	0.053	0.085	0.18	0.25	0.15	0.34		
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005	<0.005J	<0.005	<0.005J	<0.005		
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
Thallium	mg/L	0.002	<0.001	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001		
Combined Radium	pCi/L	5	<0.397J	<0.337J	<0.403	<0.291J	<0.343J	<0.414J	<0.33J	<0.314J		

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

8th Baseline Event – August 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7		
Appendix III												
Boron	mg/L	NA	0.16	<0.08J	<0.08J	0.28	0.33	0.34	0.38	0.27		
Calcium	mg/L	NA	43	98	83	57	220	250	180	510		
Chloride	mg/L	NA	130	45	8.1	5.3	23	12	26	38		
Fluoride	mg/L	4	0.26	0.17	0.32	0.27	0.45	0.25	0.4	0.22		
рН	SU	NA	6.2	5.7	6.7	7.3	7.0	7.2	7.1	6.3		
Sulfate	mg/L	NA	82	550	63	140	920	1100	730	2200		
Total Dissolved Solids	mg/L	NA	450	960	450	530	1600	1800	1400	2900		
Appendix IV												
Antimony	mg/L	0.006	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002		
Arsenic	mg/L	0.01	<0.001J	0.013	<0.001J	0.002	<0.001J	<0.001J	<0.001J	<0.001J		
Barium	mg/L	2	0.024	0.01	0.018	0.027	0.023	0.018	0.021	<0.01J		
Beryllium	mg/L	0.004	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001J		
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Chromium	mg/L	0.1	<0.002J	<0.002	0.0026	<0.002	<0.002	<0.002	<0.002	<0.002		
Cobalt	mg/L	NA	0.0036	0.01	0.00067	<0.0005J	0.0023	<0.0005J	0.0051	0.014		
Lead	mg/L	0.015	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Lithium	mg/L	NA	<0.05J	0.17	<0.05J	0.073	0.18	0.22	0.15	0.32		
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005J	<0.005J	<0.005J	<0.005J	<0.005		
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
Thallium	mg/L	0.002	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Combined Radium	pCi/L	5	<0.42J	<0.417J	<0.473	<0.476J	<0.383J	<0.389J	<0.291J	<0.346J		

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

APPENDIX 3

Monitoring Well Field Inspection Sheets and Field Notes

2022 Field Sampling Log Facility: Asbury CCR (Permit # Monitoring Well 129: MW-Sample | Blind Duplicate Field Blank **Purge Information:** Method of Well Purge: Peristaltic Pump with 3/8 - inch Diameter Tubing Actual Purge Volume Removed: 2000 mL post pump calibration . Date / Time Initiated: 11 16 -22 @ 7:47 Date / Time Completed: 11 - -22 @ Well Purged To Dryness?: Y /// Gas Detected? Purge Data: Other **Purge** Cumulative Specific Rate Dissolved (Color, Volume Temp. Hq Conductivity **Turbidity** Oxygen ORP Clarity, Time (mL/min) (mL (°C) (SU) (mS/cm) (mg/L) Odor) (MV) 7:51 200 200 4.901 Char 1200 :53 54 682 33.5 57 **Field Inspection** Fair Poor Access Time sampled Pad Condition Р Casing Condition Р Locking Cap & Lock Р Weather Conditions Riser Condition Field Inspection N/A Well ID Visible N/A Water Level Start Standing Water N/A Clear of Weeds N/A Measuring Point N/A Water Level Finish Split sample with MDNR N/A Maintenance Performed N/A **Decontamination Normal** Name (MEC Field Sampler): Ryan Ortbals and Rick Elgin N/A **Equipment Calibration Normal** N/A Redevelopment Needed N/A Any deviations from SAP N/A Sampler Signature Sediment Thickness Checked N/A Historical Data: Average of sampling events Constituent Units MW-1 MW-2 MW-3 MW-4 MW-5 MW-5A MW-6 На S.U. **NO TEST** 5.83 5.08 6.30 6.83 6.82 6.72 Specific Conductance umhos/cm **GW** 0.786 1.132 2.083 0.841 1.769 1.900 Total Well Depth ft Level Average GW Depth ft Only 1.24 0.4 5.39

DON'T

SAMPLE

mL

800

800

800

Average GW Drop 2 System Volumes

(Min Purged Amount)

1.32

800

6.92

800

7.86

Facility:	Asbury	CCR (Permit #			М	_	Well ID: M			
	formation: of Well Purge	e: Peristaltic Pu	ump with:	3/8 - inch D	Diameter 7	Sample ubing	e Blind	Duplicate [Field Bla	ank [].
				Removed:	100	1	ost pump calil	oration		
						24		1.5		
Date / Ti	me Initiated:	11 6 -2	22 @	0.00	Date ,	/ Time Con	npleted: <u>11</u>	- 16 -22	@	
Well Pur	ged To Dryne	ss?: Y N		Gas	Detected?	YN	2			
Purge Da	ata:							_		
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp. (°C)	pH (SU)	Cond	ecific uctivity 5/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidi	Other (Color, ity Clarity,) Odor)
8:31	200	600	14.0	6.78	le	06	4.08	82.6	14.0	dear
: 33		1000	14, 2	6.50	1	08	4.71	87,1	42,1	
:35	1	1400	146	6,18			239	66.8	49,0	
: 37		1800	14.4	6 06	1,13	S	1.39	640	35,7	1
	0			1	-					
						ield Inspe	ction	Goog		Poor
Time sam	npled	3:41)				ccess ad Conditi	ion	G) F	P P
mine san	ipicu	10				asing Cond		G	2	P
		1	. 16	m T		ocking Cap		G		P
Weather	Conditions	Tunny	25	OF		iser Condi		G	P	P
		, , , ,	1			ield Insped		Ye:	No	N/A
		1 1				Vell ID Visi		Y	A	N/A
Water Le	vel Start	3,57			S	tanding W	ater	Y_	K	N/A
					C	lear of We	eds	KY.) W	N/A
		3.64			N	1easuring I	Point	A) N	O N/A
Water Le	vel Finish	1.64					with MDNR	Q	GK	N/A
							e Performed		2 (N	/ N/A
							nation Norma		N	N/A
Name (M	EC Field Sam	oler): <u>Ryan Ortb</u>	als and Ric	k Elgin			Calibration N	ormal 💯	N	N/A
		1	1				nent Needed	Y	(/N	N/A
Sampler S	Signature //	In m loss	1				ons from SAP nickness Chec		I / N) N/A
Jampier 3	ngilature _v/	And a	/			annent H	TICKHESS CHEC	ineu i	(N)	/ N/A
Historical	Data: Averag	ge of sampling e	vents			7				
Constitu	uent		Units	MW- 1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
рН			S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
	Conductance	um	hos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
	eli Depth		ft	Level						
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
	GW Drop		ft		1					
	n Volumes	,	mL	DON'T	800	800	800	800	800	800

Facility:	Asbury	CCR (Permit #)		Monitoring	Well JD:_ IV	IW- 4		
	formation:			- 4			le Blind	d Duplicate	Field	Blank
Method	or well Purg	e: Peristaltic P	ump with	3/8 - inch	Diameter	Tubing				
		Actual Pu	ge Volume	e Remove	d: <u>[60</u>	() mL p	ost pump cal	ibration .		
Date / Ti	ime Initiated:	11-15 -	22 @	122	_ Date	e / Time Coi	mpleted: <u>11</u>	22	2 @	-
Well Pur	ged To Dryne	ess?: Y/N		Ga	s Detected	d? Y / N				
Purge Da	ata:									
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp. (°C)	pH (SU)	Con	pecific ductivity nS/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	1	Other (Color dity Clarity) Odor)
1:24	200	400	15.0	7.3	3 1.	18	1.34	-5.4	20,0	(lea
: 96		800	15 (7,2			1.20	-5,3		
:08		1200	15.3	7.11			0.87	-3,2	14.6	
:30	J	1600	15,2	7.0		78	0.81	-2-		
					1		0,0	4.	1).	
						Field Inspe	ction	Goo	d Fair	Poor
Time sam	mlad 1	:30				Access		<u> </u>	F	P
mne sam	piea	.,0				Pad Conditi		G	} F	Р
		11 1	7.4	10 =		Casing Cond Locking Cap		() () () () () () () () () ()	F -	P P
Weather (Conditions	Choudy	, 25	OF		Riser Condit) F	P.
		0'-	nd			ield Inspec		Ye	s N	<u> </u>
Water Lev	al Start	016	19			Well ID Visib				N/A
.vater Lev	Ci Start	12 0	1			Standing Wa Slear of We		Y	~ (K	D N/A
		15/9				Jear of we Jeasuring P		Q		N/A
Nater Leve	el Finish	100)			_	with MDNR	<u>ر</u> ۷		N/A N/A
							e Performed	Υ	X	N/A
Jama (NAE	C Field C	l.) D. O. (ation Norma		\sim N	N/A
varrie (IVIE	C Fleid Samp	ler): <u>Ryan Ortba</u>	ils and Rick	Elgin			alibration N	ormal 🥢	\supset N	N/A
		1	M	5			ent Needed	Y		N/A
ampler Sig	gnature/	ypor 1	YK/L	/			ns from SAP ickness Chec	ked Y	(A) N	N/A N/A
listorical E	Data: Average	of sampling ev	ente							
Constitue			nits	MW-1	MW-2	MW-3	MW-4	MW-5	BANA/ FA	8414.6
рН				NO TEST	5.83	5.08	6.30	6.83	MW-5A 6.82	MW-6
	Conductance		os/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
Total Wel			ft	Level			2.000	J10-T1	2.703	1.500
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
Average (ft						0.52	7.00
2 System	Volumes	10	mi	DON'T	800	800	800	800	800	800

Facility:	Asbury	CCR (Perm	it#		1	N	lonitoring \ Sample	Well ID: M	W- 5 Duplicate [V Field B	lank .
	formation: of Well Purge				3/8 - inch D Removed:	100	Tubing	est pump cali	1	*	
		12.12	A								
Date / Ti	ime Initiated:	11 (/	-22	@ 21	0-7	Date	/ Time Con	npleted: 11	-15 -22	@	-0
Well Pur	ged To Dryne	ess?: Y /	N		Gas I	Detected	? Y/N				
Purge Da	ata:										
Time	Purge Rate (mL/min)	Cumulat Volum (mL		Temp.	pH (SU)	Cond	ecific luctivity S/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbic	Other (Color, dity Clarity,) Odor)
2:10	200	600		144	7.63	0	84	1.70	-54.3	512	8 Clear
12	1	1000		14.9				1.86	1		
		1	.		7,53	1			-484		
:14		1400		14,8	7.57	0.9		4.35	-40,6	5 4.19	
(6	IJ	1800	- 1	14.5	7.60	0,8	0	4.66	-42.9	2.7/	
Water Lev Water Lev Name (Mi	Conditions vel Start vel Finish EC Field Samp ignature	oler): Ryan	ng eve	nts	« Elgin	F C L R F V S C C N D D E C R A S 6	laintenanc econtamin quipment (edevelopm ny deviatio ediment Th	on dition de Lock tion cition cle atter eds coint with MDNR e Performed ation Norma Calibration Norma calibration Norms from SAP cickness Check	I (V) ormal (V) Y Y ked Y	FFFF NEED ZEEZ ZEZEZ	N/A
Constitu	uent		Un		MW-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
pH	- 1		S.l		NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
	Conductance		umho		GW	0.786	1.132	2.083	0.841	1.769	1.900
	ell Depth GW Depth		ft		Level	1 24	0.4	F 22	4.00	6.00	7.00
	GW Depth		ft		Only	1.24	0.4	5.39	1.32	6.92	7.86
	n Volumes				DON'T		800	800	800	800	800
/ · · · · ·			277			200	555	1 000	500	300	000

Facility:	Asbury	CCR (Permit #			N	onitoring \	Well ID: MI	N- 5A		
-	formation: of Well Purge	e: Peristaltic Pu	ımp with	3/8 - inch [Diameter 1	Sample Tubing	Blind	Duplicate _	Field Bl	ank [].
					5) 2000	۸				
		Actual Pur	ge Volum	e Removed:	JUL	mL po	ost pump calil	oration .		
Date / Ti	me Initiated:	11-15 -2	2 @	3:02			npleted: 11	22	@	
Well Pur	ged To Dryne	ss?: Y / N)	Gas	Detected	? Y/(N))			
Purge Da	ıta:			_						
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp). pH (SU)	Cond	ecific luctivity S/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbid	Other (Color, ity Clarity, Odor)
7:06	200	800	15.5	6.93	3 3,	36	1.22	43.5	4.13	8 Clean
:08		1200	15.8			42	0.84	50.8	3.40	
:10	1	1600	15,0			43	(0.73	56.6	3.61	
12	/	2000	15.5	6.87	1	1	the said of the said of the	53,4	3.40	
-101	A	0.0	12.5	6.87	1	7	0.66	01,7	1. 10	
			1 P1	3		ield Inspec	etla n	Cood	Foir	Dana
Time sam	npled	7:15 park	1353 March	d 35	F C	Access Pad Conditi Casing Cond Ocking Cap	on dition & Lock	Good G	<u>Fair</u> F F F	Poor P P P
Water Lev		11.221		7,10	F V S C	tiser Conditield Inspective ID Visibility Tanding Wallear of Wellear of Wellear of Wellear of Welleas uring F	ction ble ater eds			N/A N/A N/A
Water Lev	el Finish	20,49			_ S	plit sample Iaintenanc	e with MDNR e Performed	\(\frac{\frac}\fint}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac	NA NA	N/A N/A N/A
	/	oler): <u>Ryan Ortb</u>	als and Ri	ck Elgin	E	quipment (edevelopm	nation Normal Calibration No nent Needed ons from SAP	(.37)	Z Z Z	N/A N/A) N/A N/A
Sampler S	ignature /	musta				-	ickness Chec) N/A
Historical	Data: Averag	e of sampling e	ents						-	
Constitu			Inits	MW-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
рН			S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
Specific	Conductance		os/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
Total We	ell Depth		ft	Level						
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
	GW Drop		ft			3.1		2.02	0.02	
2 System	Volumes ged Amount		mL	DON'T SAMPLE	800	800	800	800	800	800

Facility:	Asbury	CCR (Permit #		1	IV		Well ID: M			
	formation:	e: Peristaltic P	raman sazibla	2/9 in ab 1	Diamant		Blind	Duplicate	Field Bla	nnk
Wicthou	or wen runge						,			
		Actual Pu	ge Volum	e Removed	200	mL po	ost pump cali	bration_		
Date / Ti	me Initiated:	11 19	22 @	3.48	Date ,	/ Time Cor	npleted: 11	-15-22	@	
Well Pur	ged To Dryne	ess?: Y)	Gas	Detected	? Y/M				
Purge Da	ata:									
Time	Purge Rate (mL/min)	Cumulative Volume (mL)	Temp.	. pH (SU)	Cond	ecific luctivity S/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidi	Other (Color, Clarity,) Odor)
3.46	200	800	16.1	7.17	1.9	8	400	31.1	3.3/	aral
48		1200	16.3	7.07	1	-	0.76	30.2		1
150		1600	16.3	7.04		9	264	99.8	2.69	
:52	V	2000	16.4	7,01	1.90		0.63	29,2	5,65	
					F	ield Inspe	ction	Good	l Fair	Poor
	npled	PC, 3	rof		A P C L R	access ad Conditi asing Cond ocking Cap iser Condi ield Insped	on dition o & Lock tion	SAN) <u>F</u>	P P P P P
Water Lev	vel Start	10.66			Si C	Vell ID Visil tanding W lear of We	ater eds	E E	> A	N/A N/A N/A
Water Lev	vel Finish	19.86			S _I	laintenanc	Point with MDNR e Performed lation Norma		N CONTRACTOR	N/A N/A N/A N/A
Name (MI	EC Field Samp	oler): <u>Ryan Ortb</u>	als and Ric	ck Elgin	Ed	quipment (edevelopm	Calibration Notes to Note the Needed Properties of the Needed Propertie	- X	z e e	N/A N/A N/A
Sampler S	ignature <u> </u>	muc	19	•	Se	ediment Th	ickness Chec	ked Y	ED	N/A
		e of sampling e	-				1			7
Constitu	ient		Units	MW- 1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
рН			S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
	Conductance	um	hos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
	ell Depth		ft	Level						
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
	GW Drop		ft							
2 System	n Volumes		mL	DON'T	800	800	800	800	800	800

Facility:		CCR (Permit	‡	1	Mo	onitoring Samp	Well ID: M	W- 6 A Duplicate	Field Blank	
_	formation: of Well Purge	e: Peristaltic			100	ubing				
		Actual P	ırge Volum	e Removed:	1000	mLp	ost pump cali	bration.		
Date / Ti	me Initiated:	11- 16	-22 @				mpleted: <u>11</u>	- 16 -22-	@	_
Well Pur	ged To Dryne	ss?: Y /		Gas D	Detected?	Y1.6	/			
Purge Da	ata:									
Time	Purge Rate (mL/min)	Cumulative Volume (ml)	Temp	. pH (SU)	Condu	ecific activity /cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidity	Other (Color, Clarity, Odor)
913	200	600	14.8	6.67	1.9	2	1.55	50,4	16,9	Clear
9:15		1000	1			-	1	1		1
		11100	14,8	-	- Same		0.98	49.3	195	1
17		1400	14.9	6.69	2.00	4	0.74	48.9	21.3	
:19	1	1800	14,8	6.69	201	if	0.64	46.9	25.0	1/
		V			1		1		7	1
Water Lev Water Lev Name (MI Sampler S	Conditions_vel Startvel Finish EC Field Samplignature	9.40 Cloudy 9,40 18.30 oler): Ryan Ort	bals and R	ick Élgin	Ad Pa Ca Lo Ri Fi W St Clo M Sp M De Eq Re An	ser Cond eld Inspe ell ID Vis anding W ear of W easuring dit sampl aintenan contami uipment developi y deviati	tion ndition p & Lock lition ection ible Vater eeds	l ormal Y Y	Fair F F F F F F F F F F F F F F F F F F F	Poor P P P P N/A
Constitu	uent		Units	MW- 6A	MW-7					
pH	Conductor		S.U.	6.87	6.12					
	Conductance	ııı	nhos/cm	1.601	2.699					
	ell Depth GW Depth		ft	7 20	2.04					
	GW Depth		ft ft	7.28	3.04	-				
	n Volumes		IL							
	rged Amount)	mL	800	800					4-1

MV-1 W.L. = 9.72

Facility:	Asbury	CCR (Permit	#	1	М		Wellyo: MI			_
_	formation: of Well Purge	e: Peristalti	c Pump with	n 3/8 - inch I	Diameter T		le Blind	Duplicate	Field Blank	
		Actual I	Purge Volum	ne Removed	1800) mL p	ost pump calik	oration.		
Date / Ti	me Initiated:	11- 16	-22 @	9:45	Date /	Time Co	mpleted: 11	- l6 -22-	@	
Well Pur	ged To Dryne	ss?: Y / 🕅		Gas	Detected?	YIR)			
Purge Da		(0				10				
Time	Purge Rate (mL/min)	Cumulativ Volume (ml)	Temp		Cond	ecific uctivity 5/cm)	Dissolved Oxygen (mg/L)	ORP (MV)	Turbidity	Other (Color, Clarity, Odor)
9:48	200	600	195	- 661	26	9	0.85	76.3	38.5	16001
0:50		1000	14.9	651	2.7		0.54	661	320	
59		1400	15.3	6.46	27		0.49	45.9	237	
254	U	1800	19.5	6.45	- 3.7	9	0.45	36.8	9.30	
Weather Water Lev Water Lev Name (Mi	vel Finish(9:55 PC 6.40 6.40 6.40 6.40		Rick Elgin	APPCCLCATE CITY CITY CITY CITY CITY CITY CITY CITY	laintenan econtami quipment edevelopr ny deviati	cion dition p & Lock ition ition ition ition ition detion ition reds Point e with MDNR ce Performed nation Normal Calibration Normal ment Needed ons from SAP	ormal (v) Y	Fair FFFFFZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	Poor P P P P P N/A
Sampler S Historical	Data: Averag	e of samplin	g events		Se	diment T	hickness Chec	ked Y		N/A
Constitu			Units	MW- 6A	MW-7					
рН			S.U.	6.87	6.12					
	Conductance	ι	ımhos/cm	1.601	2.699	-				
	ell Depth		ft							
	GW Depth		ft	7.28	3.04					
	GW Drop		ft							
	n Volumes		mL	800	800					

APPENDIX 4

Analytical Results from Lab

ANALYTICAL REPORT

PREPARED FOR

Attn: Anika Careaga Midwest Environmental Consultants 2009 East McCarty Street Suite 2 Jefferson City, Missouri 65101

Generated 12/5/2022 2:05:21 PM

JOB DESCRIPTION

Asbury Pond - EPA Asbury Ash Pond

JOB NUMBER

180-148156-1

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh PA 15238

Eurofins Pittsburgh

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Pittsburgh and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Pittsburgh Project Manager or designee who has signed this report.

PA Lab ID: 02-00416

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Pittsburgh Project Manager.

Authorization

Generated 12/5/2022 2:05:21 PM

Authorized for release by Andy Johnson, Manager of Project Management Andy.Johnson@et.eurofinsus.com (615)301-5045 4

6

8

9

11

12

1.

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Definitions/Glossary	5
Certification Summary	6
Sample Summary	7
Method Summary	8
Lab Chronicle	9
Client Sample Results	13
QC Sample Results	23
QC Association Summary	25
Chain of Custody	27
Receint Checklists	29

-5

4

R

9

11

12

Case Narrative

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-148156-1

Job ID: 180-148156-1

Laboratory: Eurofins Pittsburgh

Narrative

Job Narrative 180-148156-1

Comments

No additional comments.

Receipt

The samples were received on 11/18/2022 9:10 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 4 coolers at receipt time were 1.8° C, 3.3° C, 4.0° C and 4.1° C.

Receipt Exceptions

The following samples were listed on the Chain of Custody (COC); however, no samples were received: MW-4 (180-148156-3), MW-5 (180-148156-4), MW-5A (180-148156-5), MW-6 (180-148156-6) and Field Blank (180-148156-10). The samples were received on 11/19/22.

GC Semi VOA

Method 9056A: The following samples were diluted due to the nature of the sample matrix: MW-4 (180-148156-3), MW-5A (180-148156-5), MW-6 (180-148156-6), MW-6A (180-148156-7), MW-7 (180-148156-8), (180-148169-B-4), (180-148169-B-4 MS) and (180-148169-B-4 MSD) at 2.5x. Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Methods 6020A, 6020B: The continuing calibration verification (CCV) associated with batch 180-419611 recovered above the upper control limit for boron. The samples associated with this CCV were non-detects/batch QC for the affected analytes; therefore, the data have been reported. The associated samples are impacted: (CCV 180-419611/169), (LCS 180-418899/2-A) and (MB 180-418899/1-A).

Methods 6020A, 6020B: Parent sample (180-147334-E-8-C), (180-147334-E-8-D MS), (180-147334-E-8-E MSD), (180-147334-E-8-C PDS) and (180-147334-E-8-C SD ^5) was prepped and reported in Prep batch # 419028 in AB#419611-61.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Field Service / Mobile Lab

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

4

6

0

9

10

12

1,

Definitions/Glossary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-148156-1

Qualifiers

			•	•	_
п	_	_	•	"	•

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier Qualifier Description

^+ Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Pittsburgh

Accreditation/Certification Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-148156-1

Laboratory: Eurofins Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-22 *
California	State	2891	04-30-23
Connecticut	State	PH-0688	09-30-22 *
Florida	NELAP	E871008	06-30-23
Georgia	State	PA 02-00416	04-30-23
Illinois	NELAP	004375	06-30-23
Kansas	NELAP	E-10350	03-31-23
Kentucky (UST)	State	162013	04-30-23
Kentucky (WW)	State	KY98043	12-31-22
Louisiana	NELAP	04041	06-30-22 *
Louisiana (All)	NELAP	04041	06-30-23
Maine	State	PA00164	03-06-24
Minnesota	NELAP	042-999-482	12-31-22
New Hampshire	NELAP	2030	04-04-23
New Jersey	NELAP	PA005	06-30-23
New York	NELAP	11182	04-01-23
North Carolina (WW/SW)	State	434	12-31-22
North Dakota	State	R-227	04-30-23
Oregon	NELAP	PA-2151	02-07-23
Pennsylvania	NELAP	02-00416	04-30-23
Rhode Island	State	LAO00362	12-31-22
South Carolina	State	89014	04-20-23
Texas	NELAP	T104704528	03-31-23
US Fish & Wildlife	US Federal Programs	058448	03-31-23
USDA	US Federal Programs	P330-16-00211	06-21-24
Utah	NELAP	PA001462019-8	05-31-23
Virginia	NELAP	10043	09-14-23
West Virginia DEP	State	142	01-31-23
Wisconsin	State	998027800	08-31-23

F

6

Ω

9

10

12

 $^{{}^{\}star}\operatorname{Accreditation/Certification\ renewal\ pending\ -\ accreditation/certification\ considered\ valid}.$

Eurofins Pittsburgh

Sample Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-148156-1	MW-2	Water	11/16/22 08:00	11/18/22 09:10
180-148156-2	MW-3	Water	11/16/22 08:40	11/18/22 09:10
180-148156-3	MW-4	Water	11/15/22 13:30	11/19/22 09:50
180-148156-4	MW-5	Water	11/15/22 14:20	11/19/22 09:50
180-148156-5	MW-5A	Water	11/15/22 15:15	11/19/22 09:50
180-148156-6	MW-6	Water	11/15/22 15:55	11/19/22 09:50
180-148156-7	MW-6A	Water	11/16/22 09:20	11/18/22 09:10
180-148156-8	MW-7	Water	11/16/22 09:55	11/18/22 09:10
180-148156-9	Duplicate	Water	11/15/22 14:35	11/18/22 09:10
180-148156-10	Field Blank	Water	11/15/22 15:30	11/19/22 09:50

1

Job ID: 180-148156-1

3

4

5

0

10

11

12

Method Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-148156-1

Method	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	EET PIT
EPA 6020A	Metals (ICP/MS)	SW846	EET PIT
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET PIT
Field Sampling	Field Sampling	EPA	EET PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET PIT

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

3

4

O

7

8

9

1 4

10

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-2 Lab Sample ID: 180-148156-1

Date Collected: 11/16/22 08:00 **Matrix: Water**

Date Received: 11/18/22 09:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			418815	11/22/22 02:11	SNL	EET PIT
	Instrumen	t ID: CHICS2100B								
Total Recoverable	Prep	3005A			50 mL	50 mL	418899	11/22/22 13:00	EEH	EET PIT
Total Recoverable	Analysis	EPA 6020A		1			419611	12/01/22 23:15	RSK	EET PIT
	Instrumen	t ID: DORY								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	419108	11/23/22 18:04	LWM	EET PIT
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	Field Sampling		1			418893	11/16/22 09:00	FDS	EET PIT
	Instrumen	t ID: NOEQUIP								

Client Sample ID: MW-3 Lab Sample ID: 180-148156-2 Date Collected: 11/16/22 08:40 **Matrix: Water**

Date Received: 11/18/22 09:10

Date Received: 11/19/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A at ID: CHICS2100B		1			418815	11/22/22 02:25	SNL	EET PI
Total Recoverable	Prep	3005A			50 mL	50 mL	418899	11/22/22 13:00	EEH	EET PI
Total Recoverable	Analysis Instrumen	EPA 6020A at ID: DORY		1			419611	12/01/22 23:25	RSK	EET PI
Total/NA	Analysis Instrumen	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	418856	11/21/22 18:52	LWM	EET PI
Total/NA	Analysis Instrumen	Field Sampling		1			418893	11/16/22 09:40	FDS	EET PI

Client Sample ID: MW-4 Lab Sample ID: 180-148156-3 Date Collected: 11/15/22 13:30 **Matrix: Water**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		2.5			418814	11/21/22 20:06	SNL	EET PIT
	Instrumen	t ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	418899	11/22/22 13:00	EEH	EET PIT
Total Recoverable	Analysis	EPA 6020A		1			419611	12/01/22 23:28	RSK	EET PIT
	Instrumen	t ID: DORY								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	418863	11/21/22 20:29	LWM	EET PIT
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	Field Sampling		1			418893	11/15/22 14:30	FDS	EET PIT
	Instrumen	t ID: NOEQUIP								

Page 9 of 30

Job ID: 180-148156-1

12/5/2022

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-5 Lab Sample ID: 180-148156-4 Date Collected: 11/15/22 14:20

Matrix: Water

Job ID: 180-148156-1

Date Received: 11/19/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		1			418814	11/21/22 20:20	SNL	EET PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	418899	11/22/22 13:00	EEH	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: DORY		1			419611	12/01/22 23:31	RSK	EET PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	418863	11/21/22 20:29	LWM	EET PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			418893	11/15/22 15:20	FDS	EET PIT

Lab Sample ID: 180-148156-5 **Client Sample ID: MW-5A** Date Collected: 11/15/22 15:15 **Matrix: Water**

Date Received: 11/19/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A t ID: CHIC2100A		2.5			418814	11/21/22 21:03	SNL	EET PIT
Total Deseyverable							440000	11/22/22 12:00		CCT DIT
Total Recoverable	Prep	3005A			50 mL	50 mL	418899	11/22/22 13:00	EEH	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: DORY		1			419611	12/01/22 23:35	RSK	EET PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	50 mL	100 mL	418863	11/21/22 20:29	LWM	EET PIT
Total/NA	Analysis Instrumen	Field Sampling		1			418893	11/15/22 16:15	FDS	EET PIT

Lab Sample ID: 180-148156-6 **Client Sample ID: MW-6** Date Collected: 11/15/22 15:55 **Matrix: Water** Date Received: 11/19/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		2.5			418814	11/21/22 21:18	SNL	EET PIT
	Instrumen	t ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	418899	11/22/22 13:00	EEH	EET PIT
Total Recoverable	Analysis	EPA 6020A		1			419611	12/01/22 23:38	RSK	EET PIT
	Instrumen	t ID: DORY								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	418863	11/21/22 20:29	LWM	EET PIT
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	Field Sampling		1			418893	11/15/22 16:55	FDS	EET PIT
	Instrumen	t ID: NOEQUIP								

Eurofins Pittsburgh

12/5/2022

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-6A Lab Sample ID: 180-148156-7 Date Collected: 11/16/22 09:20

Matrix: Water

Job ID: 180-148156-1

Date Received: 11/18/22 09:10

B T	Batch	Batch	D	Dil	Initial	Final	Batch	Prepared	A 1 4	1 -1-
Total/NA	Analysis Instrumen	Method EPA 9056A t ID: CHICS2100B	Run	Factor 2.5	Amount	Amount	Number 418815	or Analyzed 11/22/22 02:40	Analyst SNL	EET PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A EPA 6020A t ID: DORY		1	50 mL	50 mL	418899 419611	11/22/22 13:00 12/01/22 23:41		EET PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	418856	11/21/22 18:52	LWM	EET PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			418893	11/16/22 10:20	FDS	EET PIT

Lab Sample ID: 180-148156-8 **Client Sample ID: MW-7** Date Collected: 11/16/22 09:55 **Matrix: Water**

Date Received: 11/18/22 09:10

Date Received: 11/18/22 09:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		2.5			418815	11/22/22 02:55	SNL	EET PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	418899	11/22/22 13:00	EEH	EET PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: DORY		1			419611	12/01/22 23:45	RSK	EET PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	50 mL	100 mL	418856	11/21/22 18:52	LWM	EET PIT
Total/NA	Analysis Instrumen	Field Sampling		1			418893	11/16/22 10:55	FDS	EET PIT

Lab Sample ID: 180-148156-9 **Client Sample ID: Duplicate** Date Collected: 11/15/22 14:35 **Matrix: Water**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			418814	11/21/22 21:33	SNL	EET PIT
	Instrumen	t ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	418899	11/22/22 13:00	EEH	EET PIT
Total Recoverable	Analysis	EPA 6020A		1			419611	12/01/22 23:48	RSK	EET PIT
	Instrumen	t ID: DORY								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	418863	11/21/22 20:29	LWM	EET PIT
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	Field Sampling		1			418893	11/15/22 15:35	FDS	EET PIT
	Instrumen	t ID: NOEQUIP								

Eurofins Pittsburgh

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: Field Blank

Lab Sample ID: 180-148156-10

Date Collected: 11/15/22 15:30 Lab Sample 15. 100-140 130-10

Date Received: 11/19/22 09:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			418814	11/21/22 21:48	SNL	EET PIT
	Instrumer	t ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	418899	11/22/22 13:00	EEH	EET PIT
Total Recoverable	Analysis	EPA 6020A		1			419611	12/01/22 23:51	RSK	EET PIT
	Instrumer	it ID: DORY								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	418863	11/21/22 20:29	LWM	EET PIT
	Instrumer	t ID: NOEQUIP								

Laboratory References:

EET PIT = Eurofins Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: EET PIT

Batch Type: Prep

EEH = Emma Halfhill

Batch Type: Analysis

FDS = Sampler Field

LWM = Leslie McIntire

RSK = Robert Kurtz

SNL = Sean Lordo

2

Job ID: 180-148156-1

3

-4

6

8

9

10

12

1.

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-2 Lab Sample ID: 180-148156-1

Date Collected: 11/16/22 08:00
Date Received: 11/18/22 09:10

		Matulaca	Matau
		Matrix:	vvater

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	110		1.0	0.71	mg/L			11/22/22 02:11	1
Fluoride	0.44		0.10	0.026	mg/L			11/22/22 02:11	1
Sulfate	49		1.0	0.76	mg/L			11/22/22 02:11	1
Method: SW846 EPA 6020A - Me	tals (ICP/	MS) - Total	Recoverabl	е					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.13		0.080	0.060	mg/L		11/22/22 13:00	12/01/22 23:15	1
Calcium	37		0.50	0.13	mg/L		11/22/22 13:00	12/01/22 23:15	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	380		10	10	mg/L			11/23/22 18:04	1
Method: EPA Field Sampling - Fi	eld Sam	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH Hq	6.70				SU			11/16/22 09:00	

Client: Midwest Environmental Consultants

Job ID: 180-148156-1

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-3 Lab Sample ID: 180-148156-2

Date Collected: 11/16/22 08:40 Matrix: Water

Date Received: 11/18/22 09:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	62		1.0	0.71	mg/L			11/22/22 02:25	1
Fluoride	0.16		0.10	0.026	mg/L			11/22/22 02:25	1
Sulfate	480		1.0	0.76	mg/L			11/22/22 02:25	,
Method: SW846 EPA 6020A - Me	tals (ICP/	MS) - Total I	Recoverabl	е					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.066	J	0.080	0.060	mg/L		11/22/22 13:00	12/01/22 23:25	
Calcium	99		0.50	0.13	mg/L		11/22/22 13:00	12/01/22 23:25	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	920		10	10	mg/L			11/21/22 18:52	1
Method: EPA Field Sampling - Fi	eld Samp	oling							
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.06				SU			11/16/22 09:40	

_

6

8

9

4 4

12

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Lab Sample ID: 180-148156-3 Client Sample ID: MW-4

Date Collected: 11/15/22 13:30

Matrix: Water Date Received: 11/19/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.4		2.5	1.8	mg/L			11/21/22 20:06	2.5
Fluoride	ND		0.25	0.065	mg/L			11/21/22 20:06	2.5
Sulfate	500		2.5	1.9	mg/L			11/21/22 20:06	2.5
Method: SW846 EPA 6020A - Me	tals (ICP/	MS) - Total I	Recoverabl	е					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	ND		0.080	0.060	mg/L		11/22/22 13:00	12/01/22 23:28	1
Calcium	280		0.50	0.13	mg/L		11/22/22 13:00	12/01/22 23:28	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1400		10	10	mg/L			11/21/22 20:29	1
Method: EPA Field Sampling - Fi	ield Samp	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.03				SU			11/15/22 14:30	

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Lab Sample ID: 180-148156-4 **Client Sample ID: MW-5 Matrix: Water**

Date Collected: 11/15/22 14:20 Date Received: 11/19/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.0		1.0	0.71	mg/L			11/21/22 20:20	1
Fluoride	0.25		0.10	0.026	mg/L			11/21/22 20:20	1
Sulfate	140		1.0	0.76	mg/L			11/21/22 20:20	1
Method: SW846 EPA 6020A - Me	etals (ICP/	MS) - Total	Recoverabl	е					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.29		0.080	0.060	mg/L		11/22/22 13:00	12/01/22 23:31	1
Calcium	79		0.50	0.13	mg/L		11/22/22 13:00	12/01/22 23:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	550		10	10	mg/L			11/21/22 20:29	1
Method: EPA Field Sampling - F	ield Samp	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.60	-			SU			11/15/22 15:20	1

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-5A Lab Sample ID: 180-148156-5

Date Collected: 11/15/22 15:15

Matrix: Water

Date Received: 11/19/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	150		2.5	1.8	mg/L			11/21/22 21:03	2.5
Fluoride	0.21	J	0.25	0.065	mg/L			11/21/22 21:03	2.5
Sulfate	1600		2.5	1.9	mg/L			11/21/22 21:03	2.5
Method: SW846 EPA 6020A - Me	tals (ICP/	MS) - Total I	Recoverabl	е					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	2.0		0.080	0.060	mg/L		11/22/22 13:00	12/01/22 23:35	1
Calcium	420		0.50	0.13	mg/L		11/22/22 13:00	12/01/22 23:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	3000		20	20	mg/L			11/21/22 20:29	1
Method: EPA Field Sampling - Fi	eld Samp	oling							
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Hq	6.83		-		SU			11/15/22 16:15	

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-6 Lab Sample ID: 180-148156-6 **Matrix: Water**

Date Collected: 11/15/22 15:55 Date Received: 11/19/22 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	15		2.5	1.8	mg/L			11/21/22 21:18	2.5
Fluoride	0.21	J	0.25	0.065	mg/L			11/21/22 21:18	2.5
Sulfate	970		2.5	1.9	mg/L			11/21/22 21:18	2.5
Method: SW846 EPA 6020A - Me	etals (ICP/	MS) - Total	Recoverabl	е					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.43		0.080	0.060	mg/L		11/22/22 13:00	12/01/22 23:38	1
Calcium	270		0.50	0.13	mg/L		11/22/22 13:00	12/01/22 23:38	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1800		10	10	mg/L			11/21/22 20:29	1
Method: EPA Field Sampling - F	ield Samp	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.01				SU		-	11/15/22 16:55	1

Client: Midwest Environmental Consultants

Job ID: 180-148156-1

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-6A Lab Sample ID: 180-148156-7

Date Collected: 11/16/22 09:20 Matrix: Water
Date Received: 11/18/22 09:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	37		2.5	1.8	mg/L			11/22/22 02:40	2.5
Fluoride	0.41		0.25	0.065	mg/L			11/22/22 02:40	2.5
Sulfate	910		2.5	1.9	mg/L			11/22/22 02:40	2.5
Method: SW846 EPA 6020A - Me	tals (ICP/	MS) - Total I	Recoverabl	e					
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.45		0.080	0.060	mg/L		11/22/22 13:00	12/01/22 23:41	1
Calcium	230		0.50	0.13	mg/L		11/22/22 13:00	12/01/22 23:41	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1800		10	10	mg/L			11/21/22 18:52	1
Method: EPA Field Sampling - Fi	ield Sam	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.69				SU			11/16/22 10:20	1

Client: Midwest Environmental Consultants

Job ID: 180-148156-1

Project/Site: Asbury Pond - EPA

Client Sample ID: MW-7 Lab Sample ID: 180-148156-8

Date Collected: 11/16/22 09:55

Matrix: Water

Date Received: 11/18/22 09:10

Method: SW846 EPA 9056A - An	ions, Ion	Chromatog	raphy						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	49		2.5	1.8	mg/L			11/22/22 02:55	2.5
Fluoride	0.15	J	0.25	0.065	mg/L			11/22/22 02:55	2.5
Sulfate	1700		2.5	1.9	mg/L			11/22/22 02:55	2.5
	tals (ICP/	MS) - Total	Recoverabl	e					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.29		0.080	0.060	mg/L		11/22/22 13:00	12/01/22 23:45	1
Calcium	500		0.50	0.13	mg/L		11/22/22 13:00	12/01/22 23:45	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	2800		20	20	mg/L			11/21/22 18:52	1
Method: EPA Field Sampling - F	ield Samp	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.45				SU			11/16/22 10:55	1

Job ID: 180-148156-1 Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Client Sample ID: Duplicate Lab Sample ID: 180-148156-9

Date Collected: 11/15/22 14:35 **Matrix: Water** Date Received: 11/18/22 09:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.1		1.0	0.71	mg/L			11/21/22 21:33	1
Fluoride	0.26		0.10	0.026	mg/L			11/21/22 21:33	1
Sulfate	150		1.0	0.76	mg/L			11/21/22 21:33	1
Method: SW846 EPA 6020A - Method	tals (ICP/	MS) - Total I	Recoverabl	е					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.33		0.080	0.060	mg/L		11/22/22 13:00	12/01/22 23:48	1
Calcium	81		0.50	0.13	mg/L		11/22/22 13:00	12/01/22 23:48	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	550		10	10	mg/L			11/21/22 20:29	1
Method: EPA Field Sampling - Fi	eld Sam	oling							
Analyte	Result	Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac

SU

7.60

12/5/2022

11/15/22 15:35

Client: Midwest Environmental Consultants

Job ID: 180-148156-1

ND

Project/Site: Asbury Pond - EPA

Client Sample ID: Field Blank Lab Sample ID: 180-148156-10

Date Collected: 11/15/22 15:30 Matrix: Water

Date Received: 11/19/22 09:50

Total Dissolved Solids (SM 2540C)

Method: SW846 EPA 9050	6A - Anions, Ion (Chromatog	rapny						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		1.0	0.71	mg/L			11/21/22 21:48	
Fluoride	ND		0.10	0.026	mg/L			11/21/22 21:48	•
Sulfate	ND		1.0	0.76	mg/L			11/21/22 21:48	1
Method: SW846 EPA 6020	•	•				_			
	•	•	Recoverabl RL	e MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 EPA 6020 Analyte Boron	•	MS) - Total Qualifier		MDL		<u>D</u>	Prepared 11/22/22 13:00	Analyzed 12/01/22 23:51	Dil Fac
Analyte	Result	•	RL 0.080	MDL 0.060	mg/L	<u>D</u>		12/01/22 23:51	Dil Fac
Analyte Boron	Result ND	•	RL	MDL 0.060		<u>D</u>	11/22/22 13:00	12/01/22 23:51	Dil Fac
Analyte Boron	Result ND	•	RL 0.080	MDL 0.060	mg/L	<u>D</u>	11/22/22 13:00	12/01/22 23:51	Dil Fac

10

10 mg/L

12/5/2022

3

5

6

8

9

10

11/21/22 20:29

Client: Midwest Environmental Consultants Job ID: 180-148156-1

Project/Site: Asbury Pond - EPA

Method: EPA 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 180-418814/6

Matrix: Water

Analysis Batch: 418814

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 0.71 mg/L ND 1.0 11/21/22 17:39 Fluoride ND 0.10 0.026 mg/L 11/21/22 17:39 Sulfate ND 1.0 0.76 mg/L 11/21/22 17:39

Lab Sample ID: LCS 180-418814/7

Matrix: Water

Analysis Batch: 418814

Client Sample ID: Lab Control Sample Prep Type: Total/NA

7 , 0.0 20.0 110011	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	53.2		mg/L		106	80 - 120	
Fluoride	2.50	2.64		mg/L		105	80 - 120	
Sulfate	50.0	51.1		mg/L		102	80 - 120	

Lab Sample ID: MB 180-418815/6

Matrix: Water

Analysis Batch: 418815

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		1.0	0.71	mg/L			11/21/22 17:46	1
Fluoride	ND		0.10	0.026	mg/L			11/21/22 17:46	1
Sulfate	ND		1.0	0.76	mg/L			11/21/22 17:46	1

Lab Sample ID: LCS 180-418815/7

Matrix: Water

Analysis Batch: 418815

Analysis Batch. 410010	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	52.0		mg/L		104	80 - 120	
Fluoride	2.50	2.65		mg/L		106	80 - 120	
Sulfate	50.0	51.2		mg/L		102	80 - 120	

Method: EPA 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-418899/1-A

Matrix: Water

Analysis Batch: 419611

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	ND	^+	0.080	0.060	mg/L		11/22/22 13:00	12/01/22 22:18	1
Calcium	ND		0.50	0.13	mg/L		11/22/22 13:00	12/01/22 22:18	1

Lab Sample ID: LCS 180-418899/2-A

Matrix: Water

Analysis Batch: 419611

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 418899

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	1.25	1.27	^+	mg/L		102	80 - 120	
Calcium	25.0	26.7		mg/L		107	80 - 120	

Eurofins Pittsburgh

Page 23 of 30

Prep Type: Total/NA

Prep Batch: 418899

12/5/2022

10

Prep Type: Total/NA

Client Sample ID: Field Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-418856/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 418856

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared Total Dissolved Solids 10 11/21/22 18:52 ND 10 mg/L

Lab Sample ID: LCS 180-418856/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418856

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits 388 350 85 - 115 **Total Dissolved Solids** mg/L 90

Lab Sample ID: MB 180-418863/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418863

MB MB

Result Qualifier RL **MDL** Unit Analyte Prepared Analyzed Dil Fac Total Dissolved Solids $\overline{\mathsf{ND}}$ 10 10 mg/L 11/21/22 20:29

Lab Sample ID: LCS 180-418863/2 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 418863

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Total Dissolved Solids 388 85 - 115 390 mg/L 101

Lab Sample ID: 180-148156-10 DU

Matrix: Water

Analysis Batch: 418863

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit Limit Total Dissolved Solids ND ND mg/L NC

Lab Sample ID: MB 180-419108/1

Matrix: Water

Analysis Batch: 419108

MB MB

MDL Unit Analyte Result Qualifier RL Dil Fac Prepared Analyzed 10 11/23/22 18:04 **Total Dissolved Solids** ND 10 mg/L

Lab Sample ID: LCS 180-419108/2

Matrix: Water

Analysis Batch: 419108

Spike LCS LCS %Rec Added Result Qualifier D Limits Unit %Rec Total Dissolved Solids 388 380 mg/L 98 85 - 115

Eurofins Pittsburgh

12/5/2022

QC Association Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-148156-1

HPLC/IC

Analysis Batch: 418814

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-148156-3	MW-4	Total/NA	Water	EPA 9056A	
180-148156-4	MW-5	Total/NA	Water	EPA 9056A	
180-148156-5	MW-5A	Total/NA	Water	EPA 9056A	
180-148156-6	MW-6	Total/NA	Water	EPA 9056A	
180-148156-9	Duplicate	Total/NA	Water	EPA 9056A	
180-148156-10	Field Blank	Total/NA	Water	EPA 9056A	
MB 180-418814/6	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-418814/7	Lab Control Sample	Total/NA	Water	EPA 9056A	

Analysis Batch: 418815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-148156-1	MW-2	Total/NA	Water	EPA 9056A	
180-148156-2	MW-3	Total/NA	Water	EPA 9056A	
180-148156-7	MW-6A	Total/NA	Water	EPA 9056A	
180-148156-8	MW-7	Total/NA	Water	EPA 9056A	
MB 180-418815/6	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-418815/7	Lab Control Sample	Total/NA	Water	EPA 9056A	

Metals

Prep Batch: 418899

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-148156-1	MW-2	Total Recoverable	Water	3005A	
180-148156-2	MW-3	Total Recoverable	Water	3005A	
180-148156-3	MW-4	Total Recoverable	Water	3005A	
180-148156-4	MW-5	Total Recoverable	Water	3005A	
180-148156-5	MW-5A	Total Recoverable	Water	3005A	
180-148156-6	MW-6	Total Recoverable	Water	3005A	
180-148156-7	MW-6A	Total Recoverable	Water	3005A	
180-148156-8	MW-7	Total Recoverable	Water	3005A	
180-148156-9	Duplicate	Total Recoverable	Water	3005A	
180-148156-10	Field Blank	Total Recoverable	Water	3005A	
MB 180-418899/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-418899/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 419611

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-148156-1	MW-2	Total Recoverable	Water	EPA 6020A	418899
180-148156-2	MW-3	Total Recoverable	Water	EPA 6020A	418899
180-148156-3	MW-4	Total Recoverable	Water	EPA 6020A	418899
180-148156-4	MW-5	Total Recoverable	Water	EPA 6020A	418899
180-148156-5	MW-5A	Total Recoverable	Water	EPA 6020A	418899
180-148156-6	MW-6	Total Recoverable	Water	EPA 6020A	418899
180-148156-7	MW-6A	Total Recoverable	Water	EPA 6020A	418899
180-148156-8	MW-7	Total Recoverable	Water	EPA 6020A	418899
180-148156-9	Duplicate	Total Recoverable	Water	EPA 6020A	418899
180-148156-10	Field Blank	Total Recoverable	Water	EPA 6020A	418899
MB 180-418899/1-A	Method Blank	Total Recoverable	Water	EPA 6020A	418899
LCS 180-418899/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020A	418899

Eurofins Pittsburgh

Page 25 of 30

QC Association Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Pond - EPA

Job ID: 180-148156-1

General Chemistry

Analysis Batch: 418856

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-148156-2	MW-3	Total/NA	Water	SM 2540C	
180-148156-7	MW-6A	Total/NA	Water	SM 2540C	
180-148156-8	MW-7	Total/NA	Water	SM 2540C	
MB 180-418856/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-418856/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 418863

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-148156-3	MW-4	Total/NA	Water	SM 2540C	-
180-148156-4	MW-5	Total/NA	Water	SM 2540C	
180-148156-5	MW-5A	Total/NA	Water	SM 2540C	
180-148156-6	MW-6	Total/NA	Water	SM 2540C	
180-148156-9	Duplicate	Total/NA	Water	SM 2540C	
180-148156-10	Field Blank	Total/NA	Water	SM 2540C	
MB 180-418863/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-418863/2	Lab Control Sample	Total/NA	Water	SM 2540C	
180-148156-10 DU	Field Blank	Total/NA	Water	SM 2540C	

Analysis Batch: 419108

Lab Sample ID 180-148156-1	Client Sample ID MW-2	Prep Type Total/NA	Matrix Water	Method SM 2540C	Prep Batch
MB 180-419108/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-419108/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Field Service / Mobile Lab

Analysis Batch: 418893

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-148156-1	MW-2	Total/NA	Water	Field Sampling	
180-148156-2	MW-3	Total/NA	Water	Field Sampling	
180-148156-3	MW-4	Total/NA	Water	Field Sampling	
180-148156-4	MW-5	Total/NA	Water	Field Sampling	
180-148156-5	MW-5A	Total/NA	Water	Field Sampling	
180-148156-6	MW-6	Total/NA	Water	Field Sampling	
180-148156-7	MW-6A	Total/NA	Water	Field Sampling	
180-148156-8	MW-7	Total/NA	Water	Field Sampling	
180-148156-9	Duplicate	Total/NA	Water	Field Sampling	

Eurofins Pittsburgh

12/5/2022

Page 26 of 30

NG estAmeric 80-148156 Waybil

estAmen

THE I FADER IN FNVIRONMENTAL

Part # 159469-434 MTV EXPIRE T3

GIN ID: GTYA (573) 418-0839 ED EX (HOLD FOR PICK UP)

JOPLIN, MO 64801 UNITED STATES US

iestamerica pittsburgh

250CE\E488\$EE4D

301 ALPHA DRIVE RIDC PARK

GH PA 152382907

FedEx

Theorrected temp

Thermometer ID

PITTSBURGH PA 152382907

Page 2007

PITTSBURGH PA 152382907

TESTAMERICA PITTSBURGH

301 ALPHA DRIVE

RIDC PARK

TEŜTAMERÍCA PITTSBURGH

301 ALPHA DRIVE Ridc Park

ORIGIN ID:GTYA (573) 418-0839 RICK ELGIN FED EX (HOLD FOR PICK UP) 3530 INDUSTRIAL DRIVE

THE LEADER IN ENVIRONME!

JOPLIN, MO 64801 UNITED STATES US

ORÍGIN ID:GTYA (573) 418-0839°

FEB"EX (HOLD FOR PICK UP) 3530 INDUSTRIAL DRIVE

JOPLIN, MO 64801 UNITED STATES US

rected femp Iometer ID

V.

FedEx

R-001 effective 11/8/18

Fed Ex (2221 5881 4551 6415

Initials~

Incorrected temp Thermorneter ID PT-WI-SR-001 effective 11/8/18

빙

PT-WI-SR-001 effective 11/8/18

QF (A)

XN AGCA

4551 6389°

THU - 17 NOV 10:30A

PA-US

XN AGCA

XN AGCA

FedEx

PA-US

N874252 11/16 SB1JG/E4BB/FE2D

12/5/2022

Client: Midwest Environmental Consultants

Job Number: 180-148156-1

Login Number: 148156 List Source: Eurofins Pittsburgh

List Number: 1

Creator: Watson, Debbie

Creator: watson, Debbie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Midwest Environmental Consultants

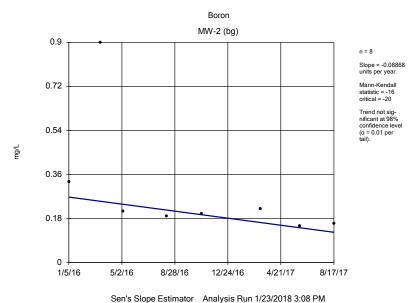
Job Number: 180-148156-1

Login Number: 148156 List Source: Eurofins Pittsburgh

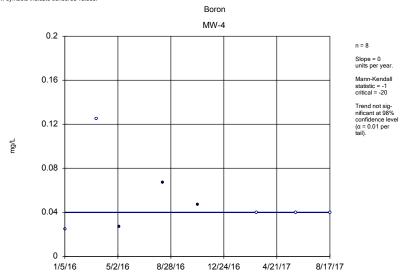
List Number: 2

Creator: Watson, Debbie

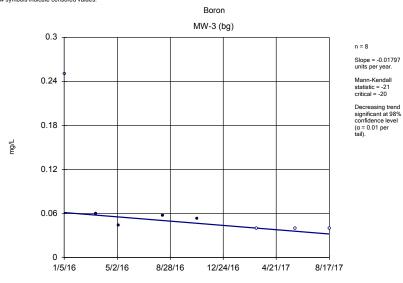
orcator. Watson, Debbic		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	


APPENDIX 5

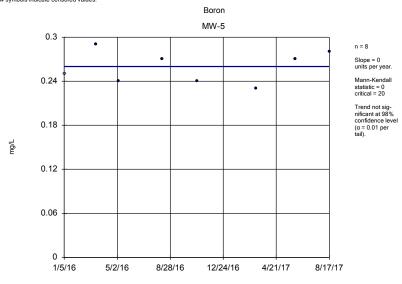
Statistical Analysis


Sanitas[™] Output – Background

Trending Analysis

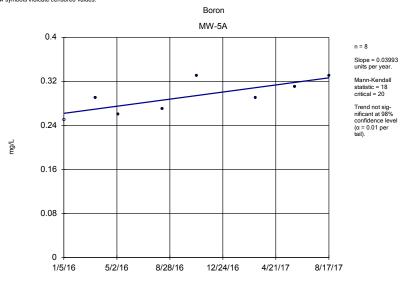

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas $^{\text{™}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

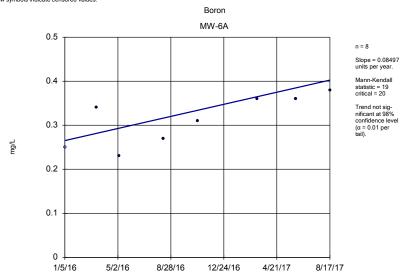
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

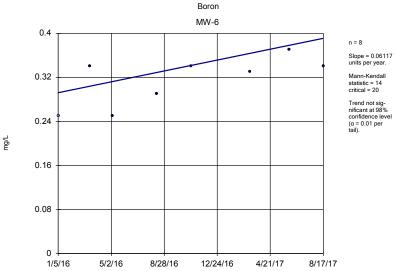

Sanitas $^{\text{IM}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

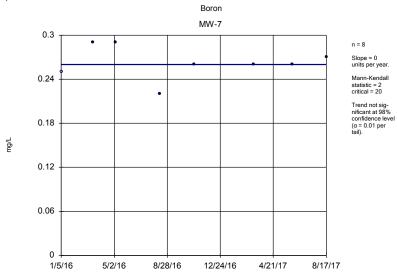
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

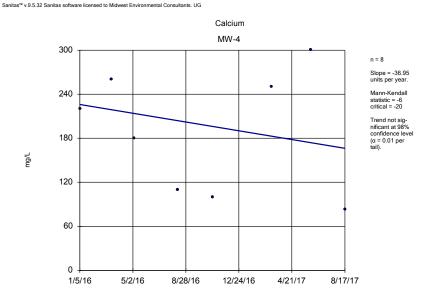
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


 $Sanitas \ ^{w}v.9.5.32\ Sanitas\ software\ licensed\ to\ Midwest\ Environmental\ Consultants.\ UG\ Hollow\ symbols\ indicate\ censored\ values.$

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

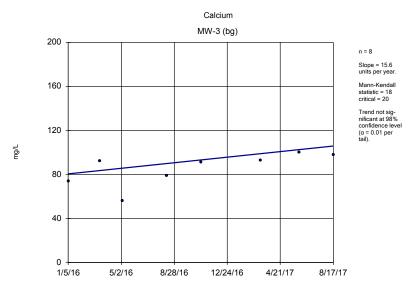
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas $^{\text{™}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

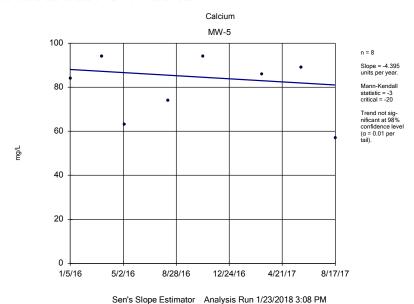


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

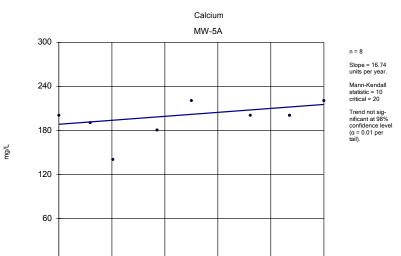
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

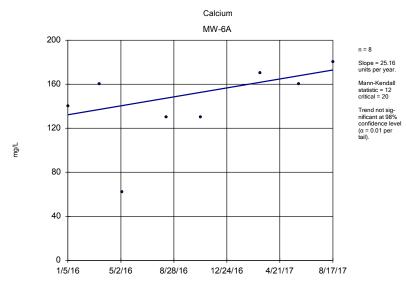
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

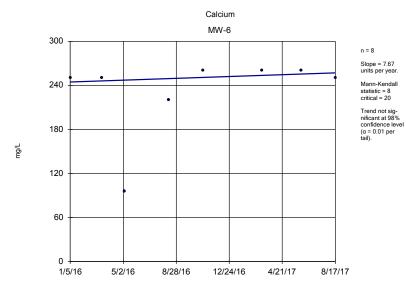
8/28/16

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

12/24/16

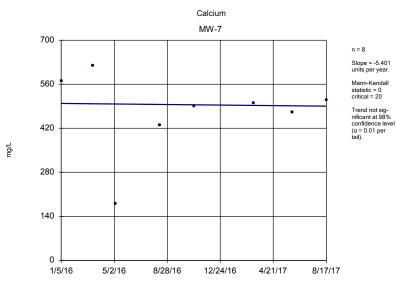

4/21/17

8/17/17

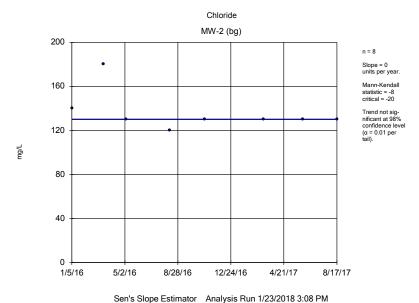

1/5/16

5/2/16

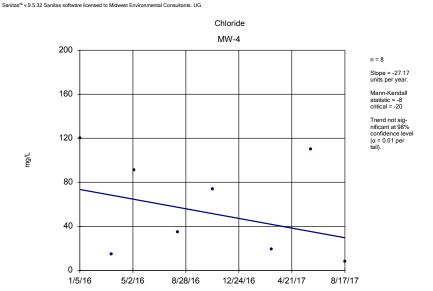
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

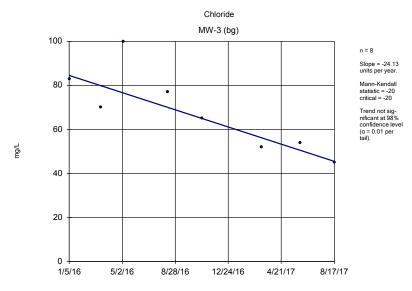

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

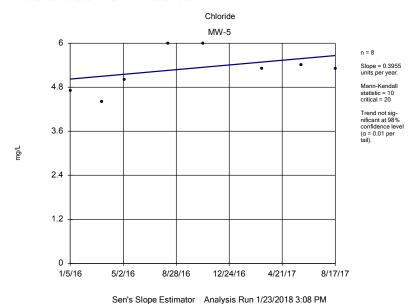


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

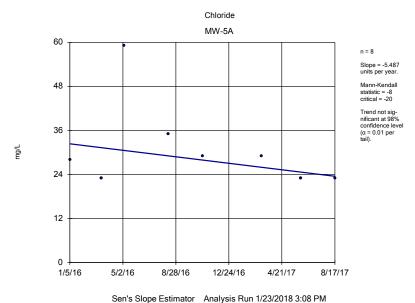
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



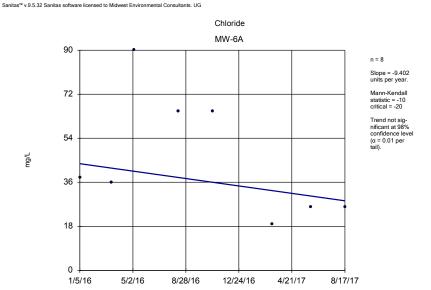
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

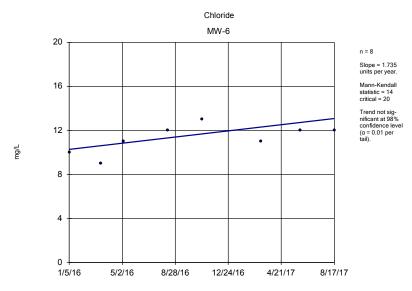
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



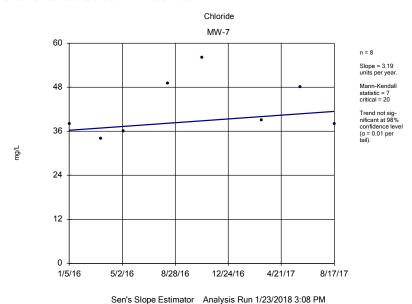
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

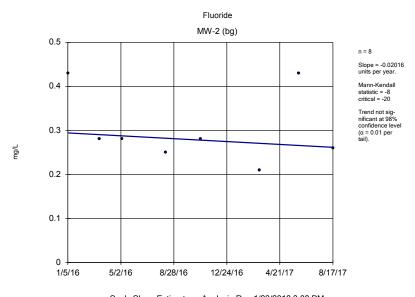
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

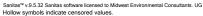

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

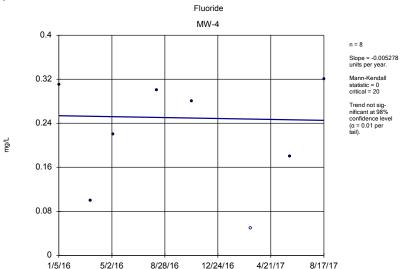
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

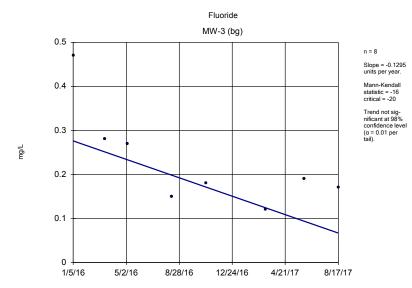


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

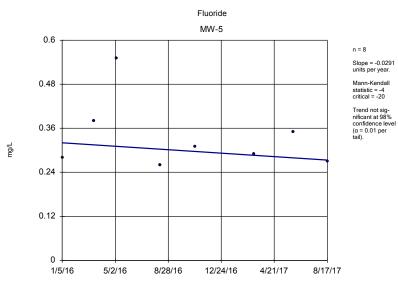
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



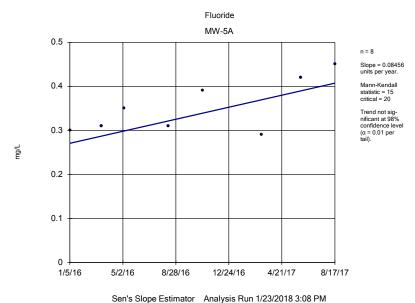

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

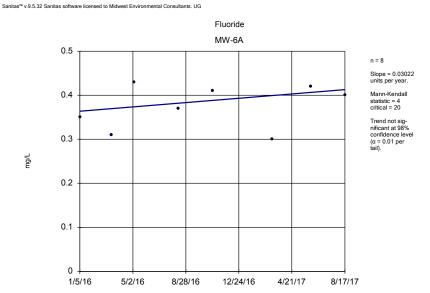
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

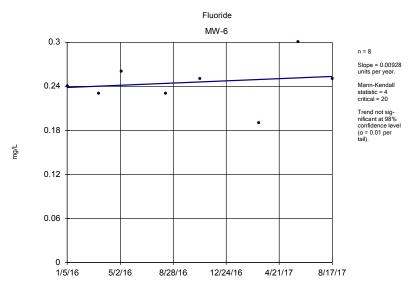

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG



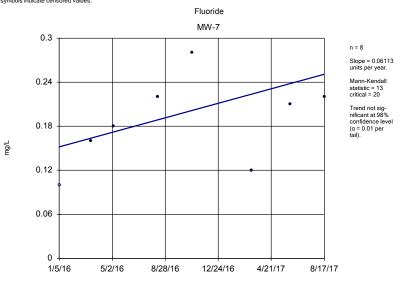
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

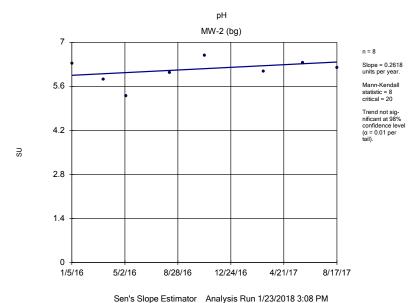


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

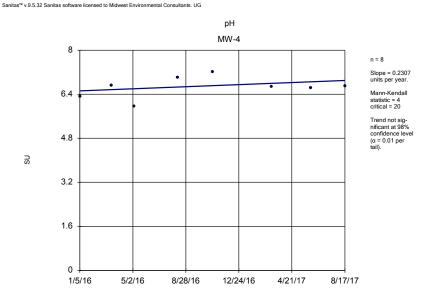
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

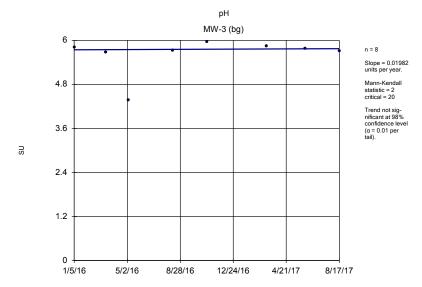

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas $^{\text{\tiny{IM}}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

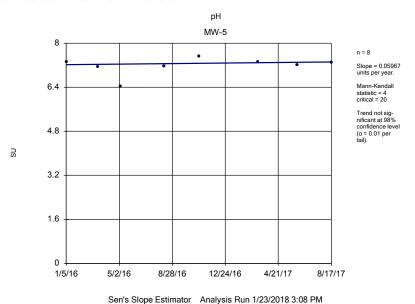


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

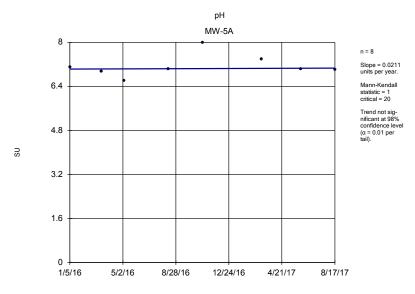
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

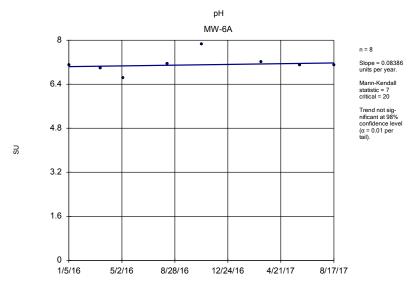

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

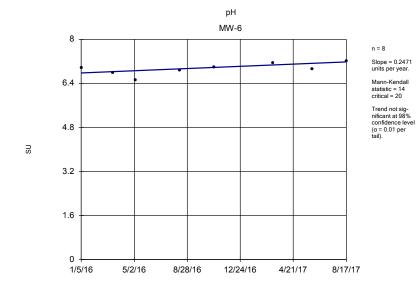
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



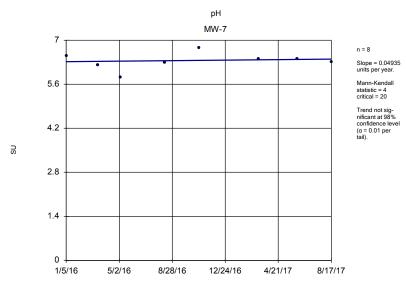
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

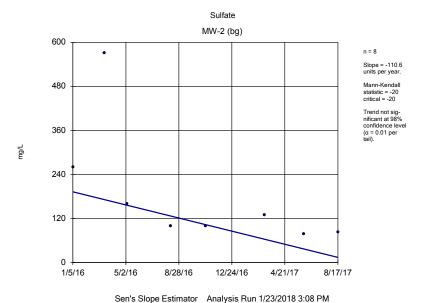

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

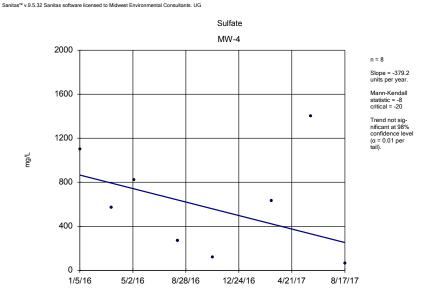
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

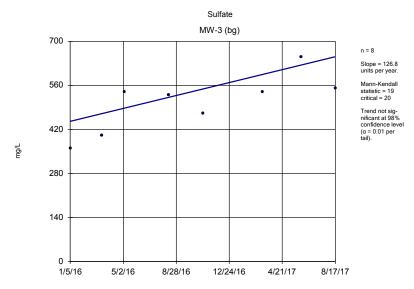

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

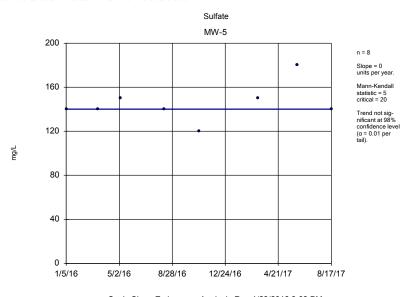


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

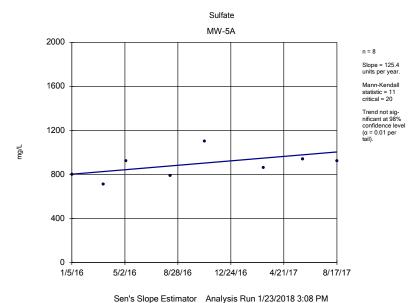
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



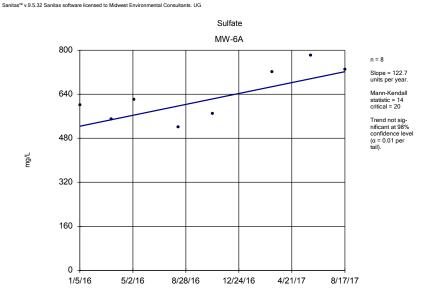
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

2000

1600

1200

1200

1200

800

400

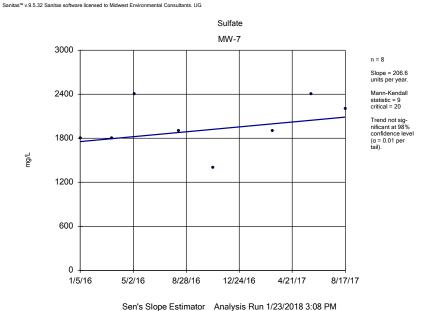
8/28/16

Sulfate

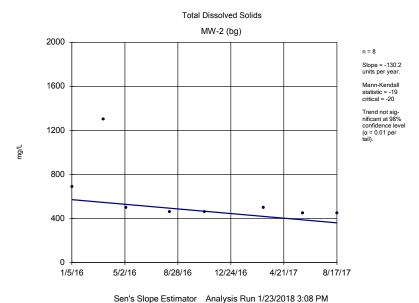
MW-6

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

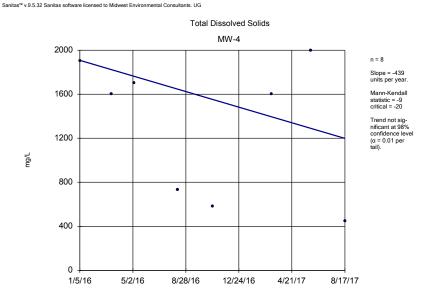
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


12/24/16

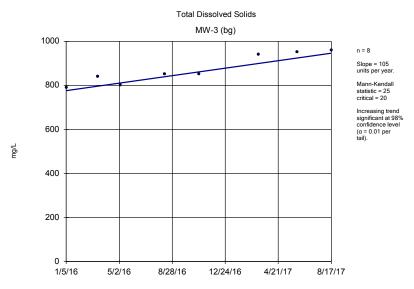
4/21/17


8/17/17

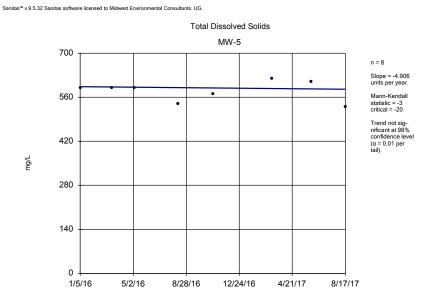
1/5/16


5/2/16

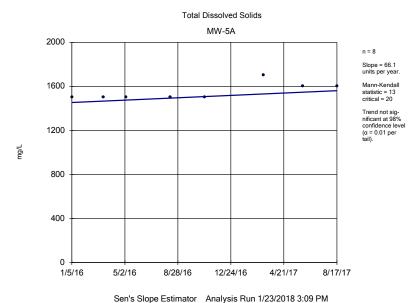
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



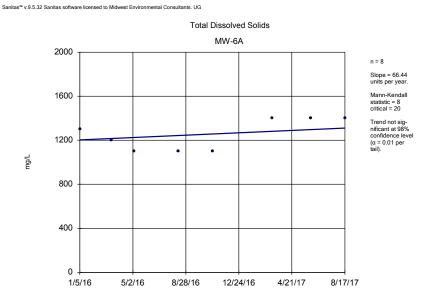
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

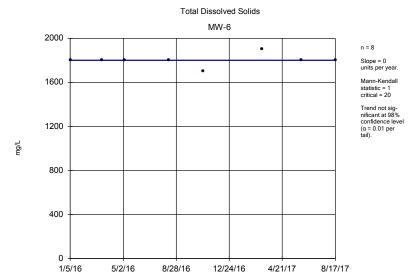

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

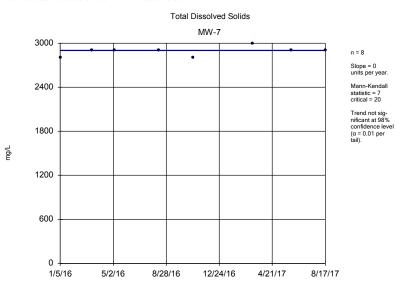


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

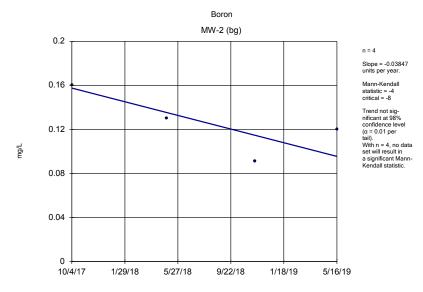

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

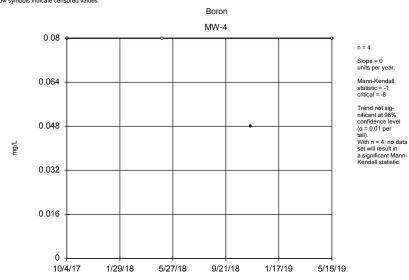
Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Trend Test

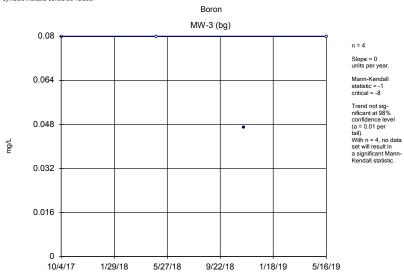
The	e Empire District	Client: Midwest Environmental Consultants		ıltants	Data: Asbury CCR I	y Printed 1/23/2018, 3:10 PM						
Constituent		<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)		MW-2 (bg)	-0.08868	-16	-20	No	8	0	n/a	n/a	0.02	NP
Boron (mg/L)		MW-3 (bg)	-0.01797	-21	-20	Yes	8	50	n/a	n/a	0.02	NP
Boron (mg/L)		MW-4	0	-1	-20	No	8	62.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-5	0	0	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-5A	0.03993	18	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-6	0.06117	14	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-6A	0.08497	19	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-7	0	2	20	No	8	12.5	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-2 (bg)	-0.8333	-2	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-3 (bg)	15.6	18	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-4	-36.95	-6	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-5	-4.395	-3	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-5A	16.74	10	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-6	7.67	8	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-6A	25.16	12	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-7	-5.401	0	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-2 (bg)	0	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-3 (bg)	-24.13	-20	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-4	-27.17	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-5	0.3955	10	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-5A	-5.487	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-6	1.735	14	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-6A	-9.402	-10	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-7	3.19	7	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-2 (bg)	-0.02016	-8	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-3 (bg)	-0.1295	-16	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-4	-0.00	0	20	No	8	12.5	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-5	-0.0291	-4	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-5A	0.08456	15	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-6	0.00928	4	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-6A	0.03022	4	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-7	0.06113	13	20	No	8	12.5	n/a	n/a	0.02	NP
pH (SU)		MW-2 (bg)	0.2618	8	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-3 (bg)	0.01982	2	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-4	0.2307	4	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-5	0.05967	4	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-5A	0.0211	1	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-6	0.2471	14	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-6A	0.08386	7	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-7	0.04935	4	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-2 (bg)	-110.6	-20	-20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-3 (bg)	126.8	19	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-4	-379.2	-8	-20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-5	0	5	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-5A	125.4	11	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-6	46.31	6	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-6A	122.7	14	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-7	206.6	9	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-2 (bg)	-130.2	-19	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-3 (bg)	105	25	20	Yes	8	0	n/a	n/a	0.02	NP


Trend Test

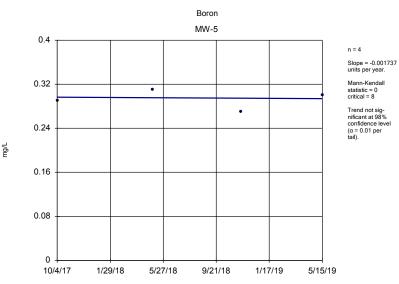

	The Empire District	Client: Midwest Environmental Consultants			Data: Asbury CCR Impoundments GW Baseline Database - App 3 only						Printed 1/23/2018, 3:10 PM		
Constituent		<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Total Dissolved Solids (mg/L)		MW-4	-439	-9	-20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-5	-4.906	-3	-20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-5A	66.1	13	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-6	0	1	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-6A	66.44	8	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-7	0	7	20	No	8	0	n/a	n/a	0.02	NP	

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

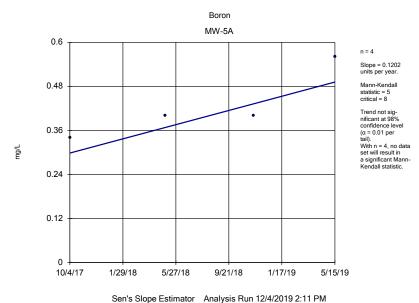
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



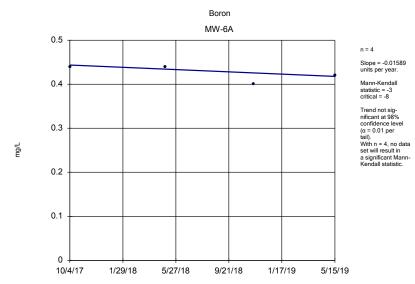
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

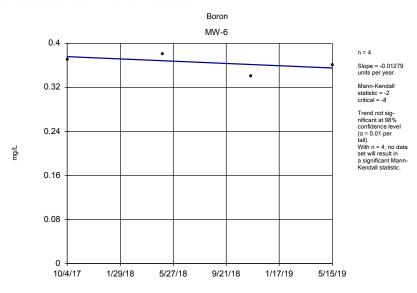
Sanitas $^{\text{™}}$ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

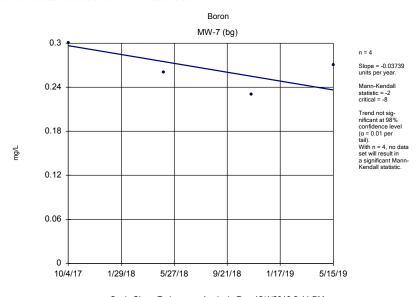

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

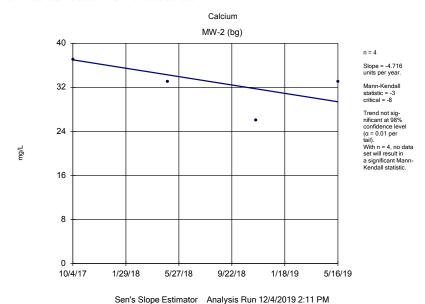

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

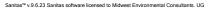

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

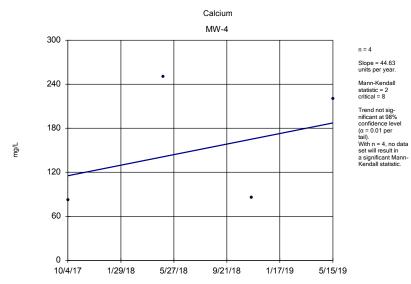

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

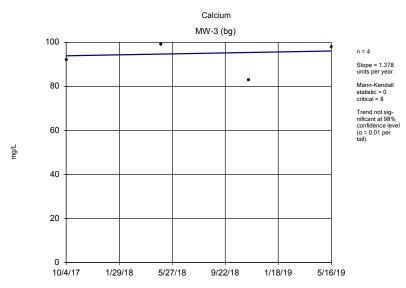

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

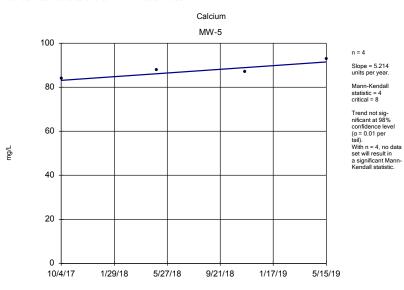
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background




Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

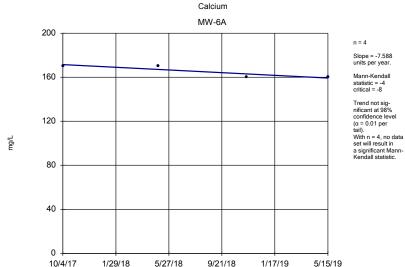

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

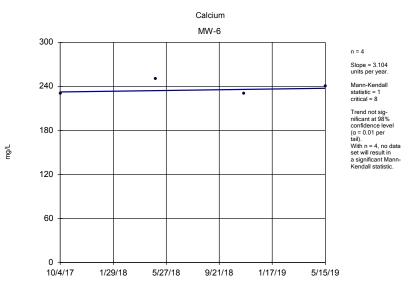
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

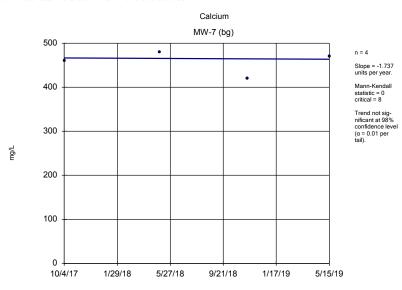

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

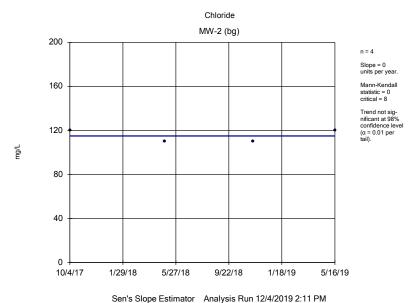

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

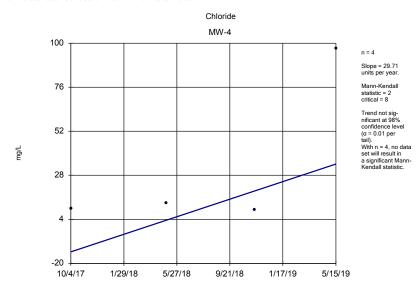

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

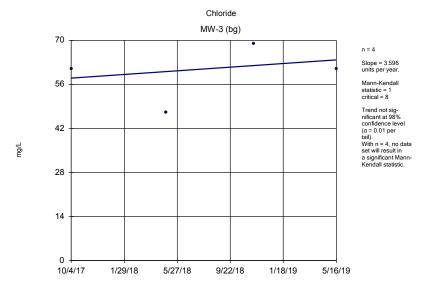
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

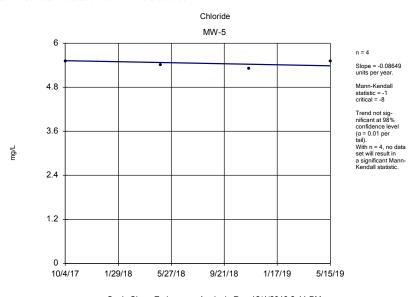

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

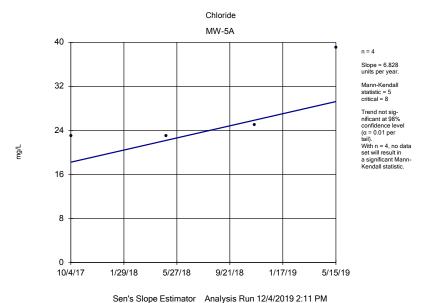

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

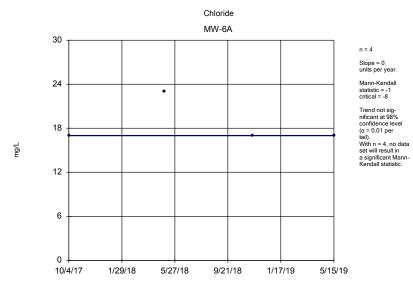

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

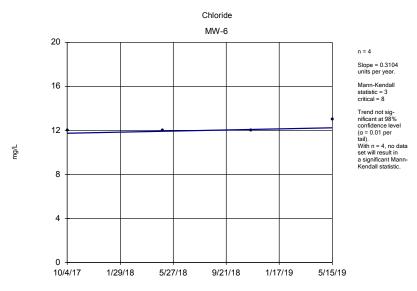
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

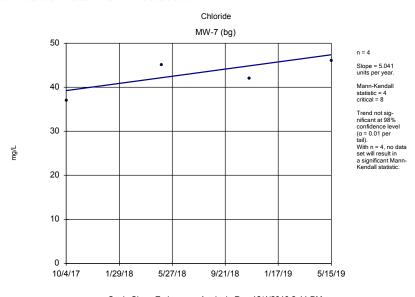

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

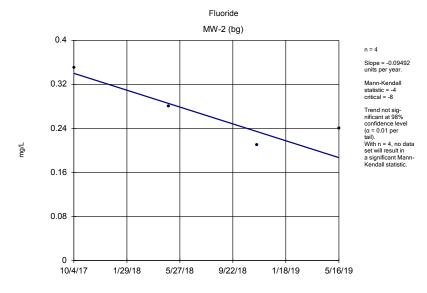

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

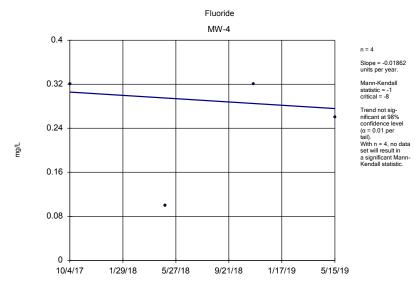

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

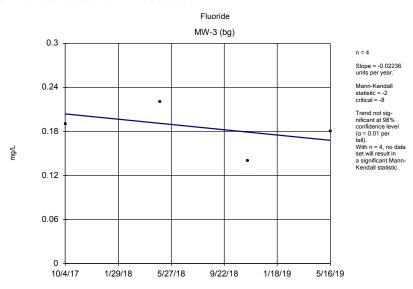

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

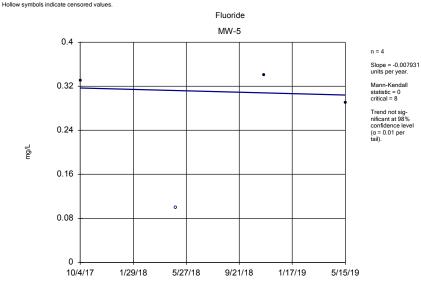
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

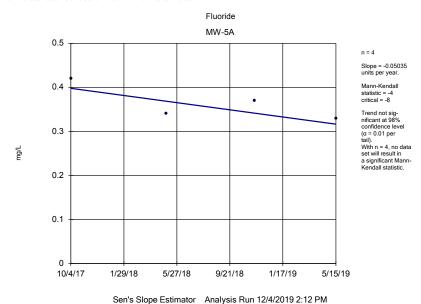
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

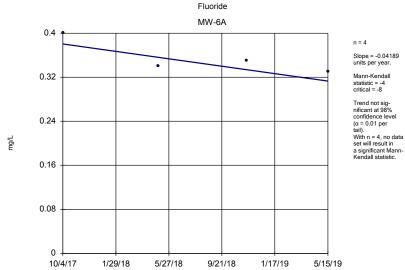
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



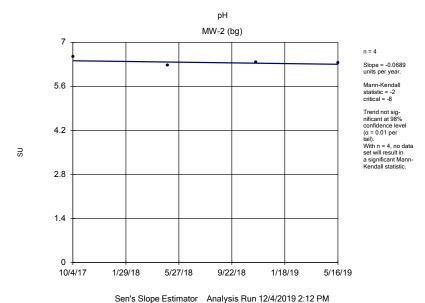
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

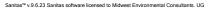
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

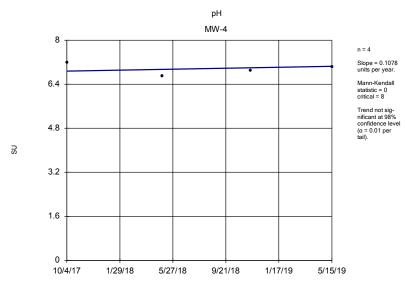

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

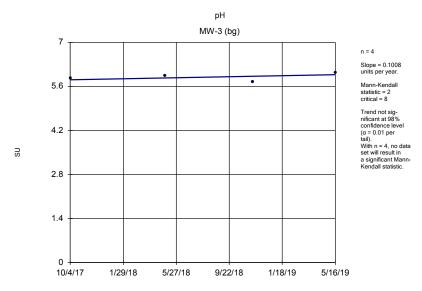

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

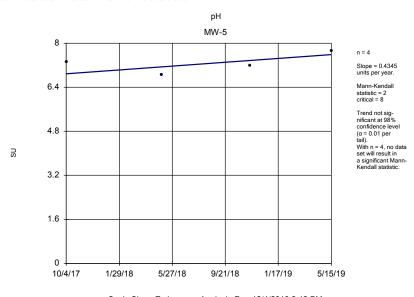
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



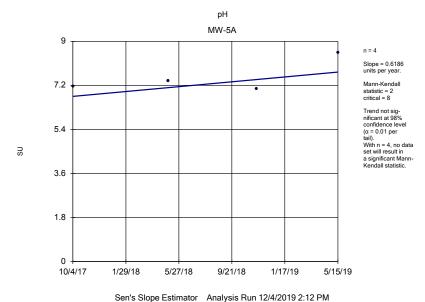

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

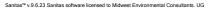

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

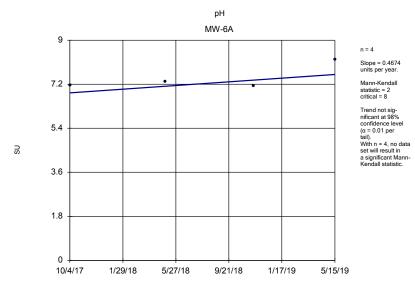

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

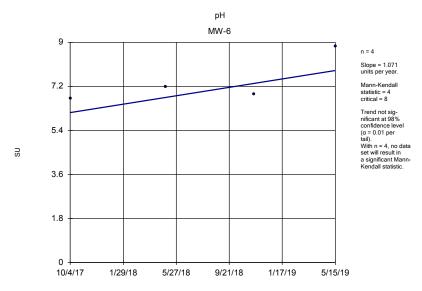

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

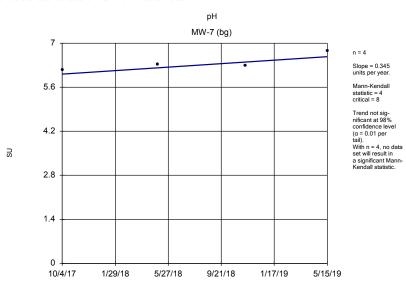
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



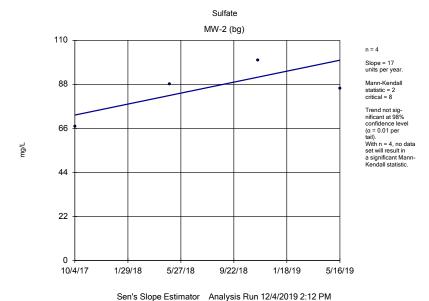

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

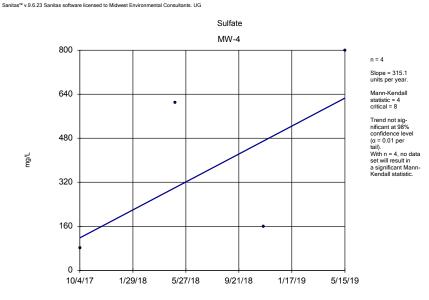

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

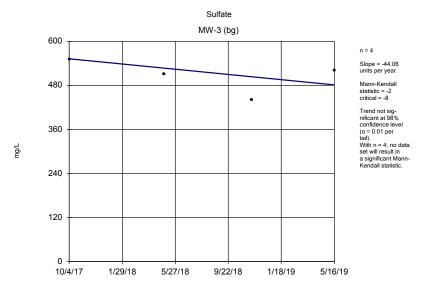
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

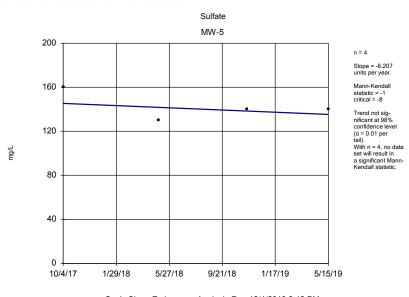

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

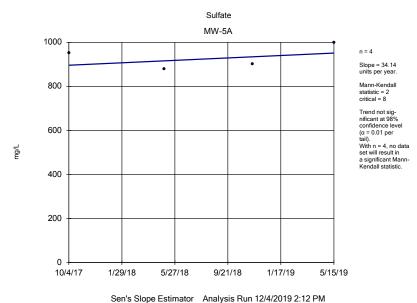

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

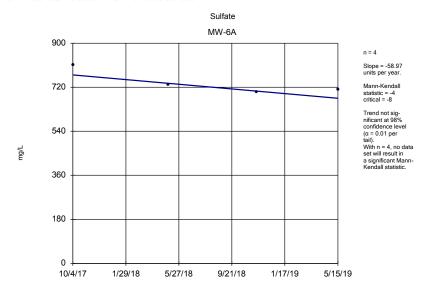

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

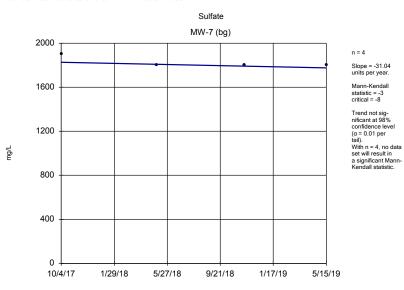

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

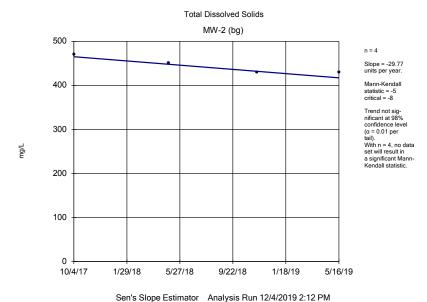

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

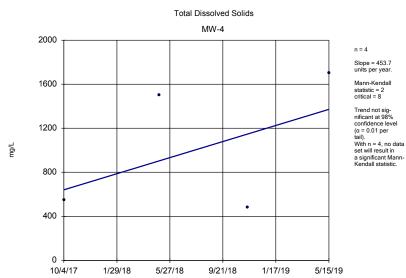
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

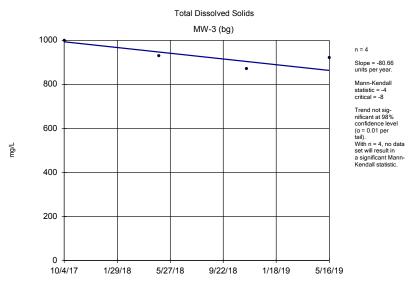

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

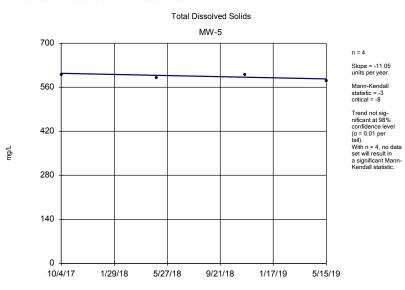


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

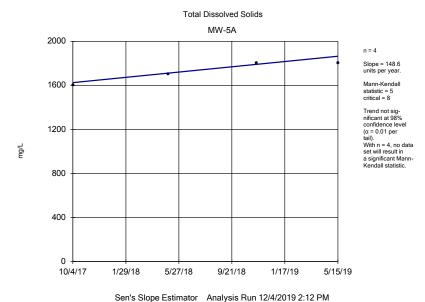
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



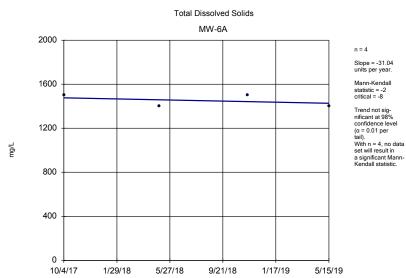
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

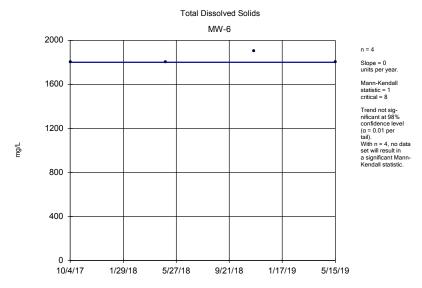

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

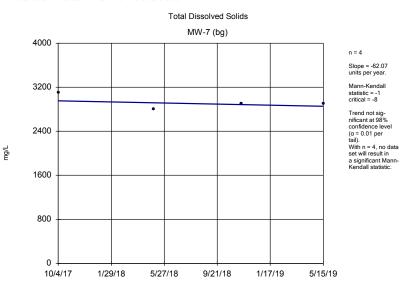


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

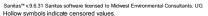
Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

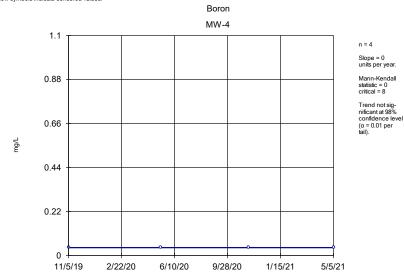
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

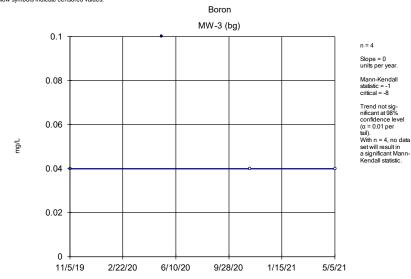
	The Empire District Client: Mic	dwest Environme	ental Consultants	Data: 11-	19 App 3 As	bury pond	s with backg	round Printe	ed 12/4/2019, 2:		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.03847	-4	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	-0.00	0	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.1202	5	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.01279	-2	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01589	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.03739	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-4.716	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	1.378	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	44.63	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	5.214	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	14.15	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	3.104	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	-7.588	-4	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	-1.737	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	0	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	3.596	1	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	29.71	2	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	-0.08649	- -1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	6.828	5	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	0.3104	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	0	-1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	5.041	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	-0.09492	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	-0.02236	-2	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.01862	<u>-</u> -1	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5	-0.00	0	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5A	-0.05035	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	-0.03966	-3	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	-0.04189	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	-0.01557	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.0689	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	0.1008	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	0.1078	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	0.4345	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	0.6186	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	1.071	4	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	0.4674	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	0.345	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	17	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	-44.06	-2	-8	No	4	0	n/a	n/a	0.02	NP
											NP
Sulfate (mg/L) Sulfate (mg/L)	MW-4 MW-5	315.1 -6.207	4	8 -8	No No	4 4	0 0	n/a	n/a	0.02 0.02	NP NP
			-1 2	-8 8	No No	4	0	n/a	n/a		NP NP
Sulfate (mg/L)	MW-5A	34.14	2		No			n/a	n/a	0.02	
Sulfate (mg/L)	MW-6	-8.649 50.07	-1	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	-58.97	-4	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	-31.04	-3	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	-29.77	-5	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	-80.66	-4	-8	No	4	0	n/a	n/a	0.02	NP


Trend Test


	The Empire District Client: Mi	District Client: Midwest Environmental Consultants				Data: 11-19 App 3 Asbury ponds with background Printed 12/4/2019, 2:13 PM						
Constituent	Well	<u>Slope</u>	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Total Dissolved Solids (mg/L)	MW-4	453.7	2	8	No	4	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)	MW-5	-11.05	-3	-8	No	4	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)	MW-5A	148.6	5	8	No	4	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)	MW-6	0	1	8	No	4	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)	MW-6A	-31.04	-2	-8	No	4	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)	MW-7 (bg)	-62.07	-1	-8	No	4	0	n/a	n/a	0.02	NP	

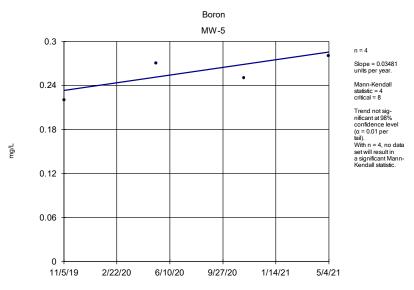
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

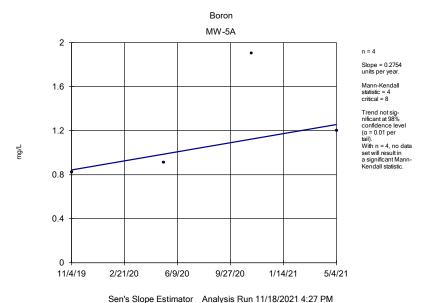


Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

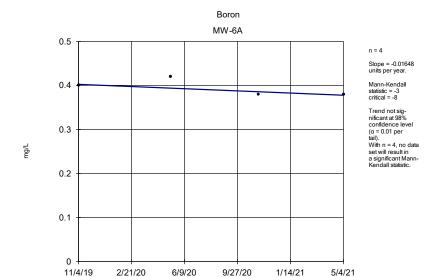
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

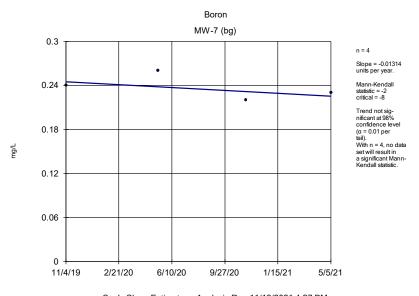


Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

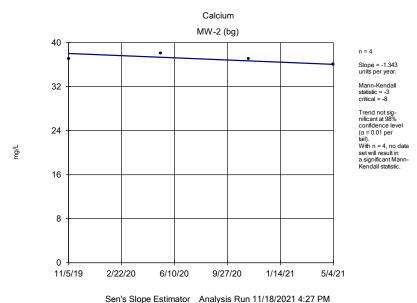
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

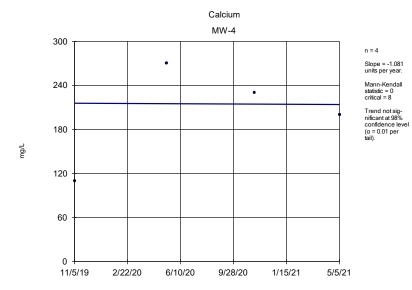
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

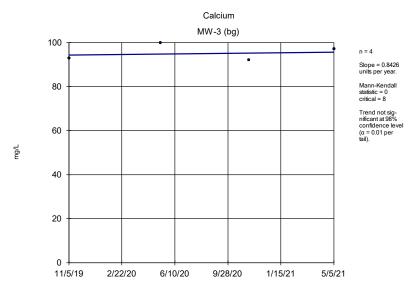
Boron MW-6 0.4 Slope = -0.003336 units per year. Mann-Kendall 0.32 statistic = -1 critical = -8 Trend not sig-nificant at 98% confidence level 0.24 $(\alpha = 0.01 \text{ per})$ With n = 4, no data mg/L set will result in a significant Mann-Kendall statistic. 0.16 0.08 11/4/19 2/21/20 6/9/20 9/27/20 1/14/21 5/4/21

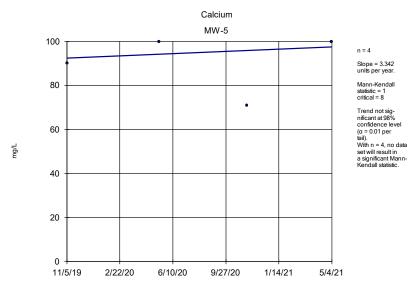
Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

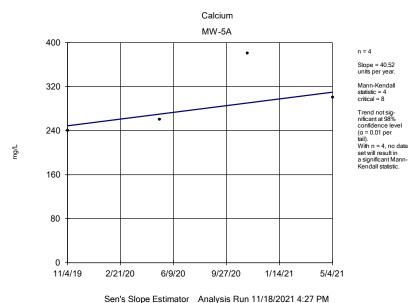

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

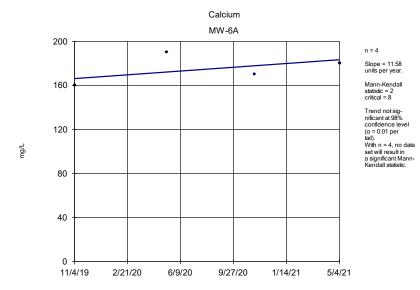

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

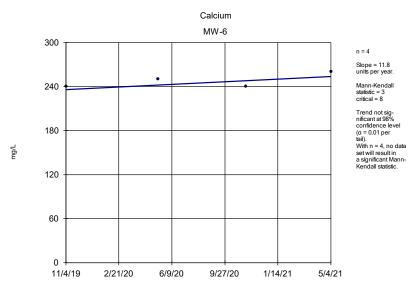
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

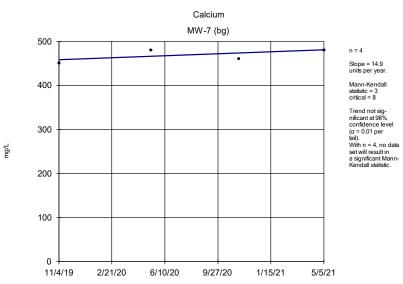

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

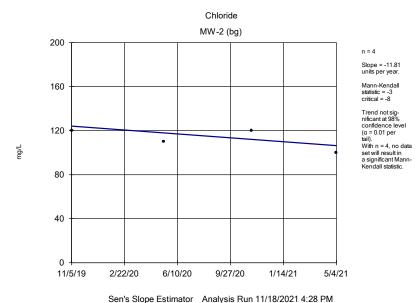

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

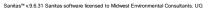

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

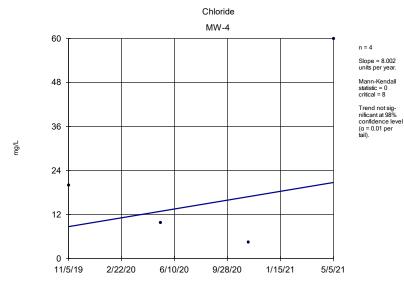

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

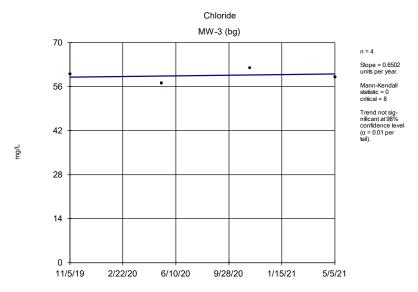

Sen's Slope Estimator Analysis Run 11/18/2021 4:27 PM

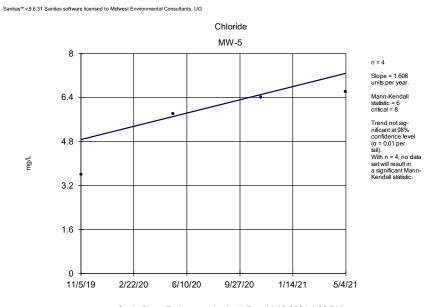
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background




Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

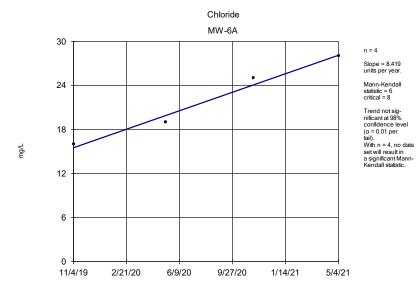

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

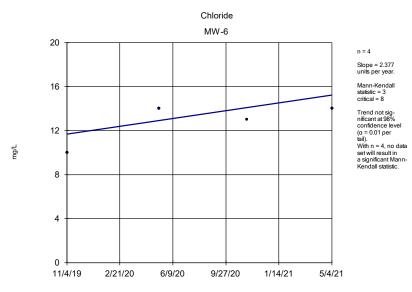

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

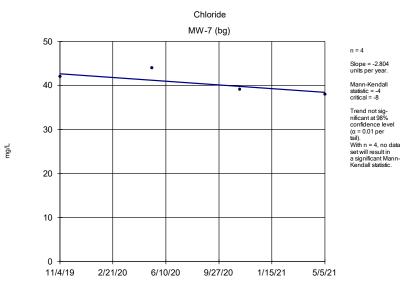


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

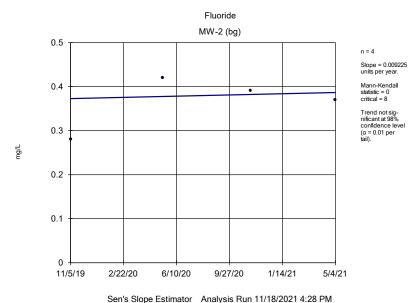
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



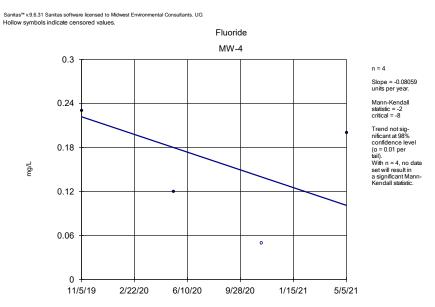
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

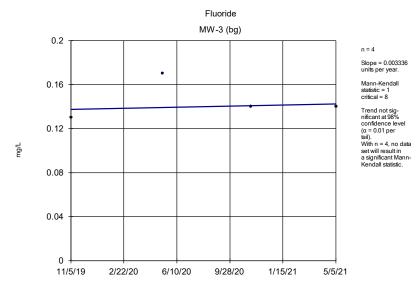

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



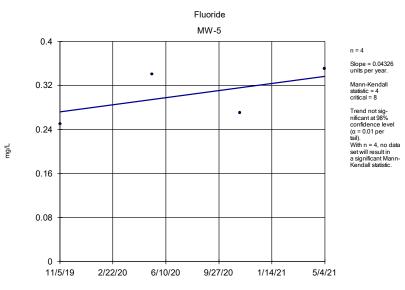
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



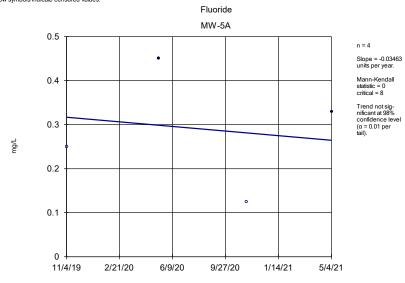
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

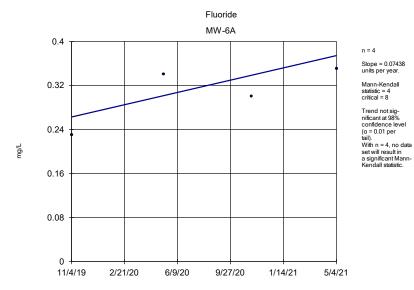
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



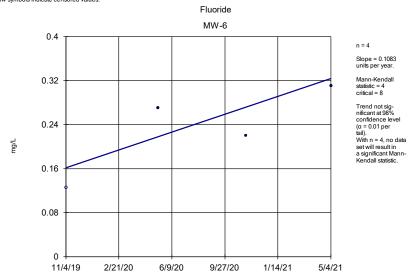
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

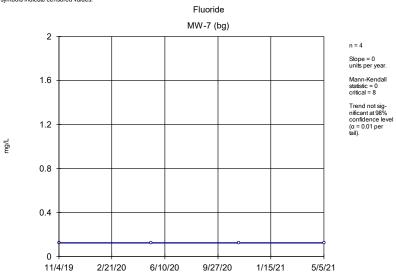
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

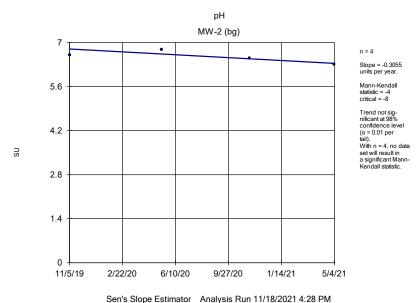
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sanitas™ v.9.6.31 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.



Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

11/5/19

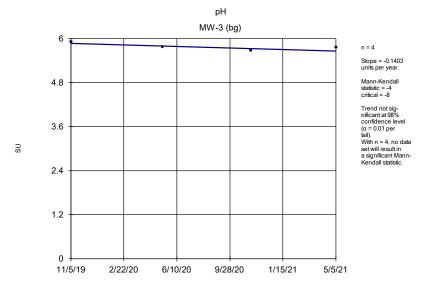
2/22/20

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

рΗ

MW-4 n = 4 Slope = -0.5684 units per year. Mann-Kendall statistic = -2 critical = -8 6.4 Trend not sig-nificant at 98% confidence level 4.8 $(\alpha = 0.01 \text{ per})$ With n = 4, no data SU set will result in a significant Mann-Kendall statistic. 3.2 1.6

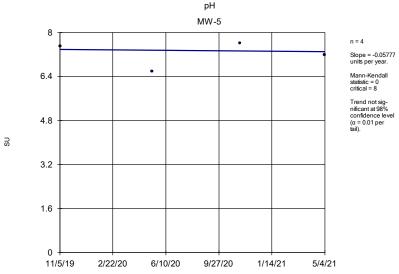
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

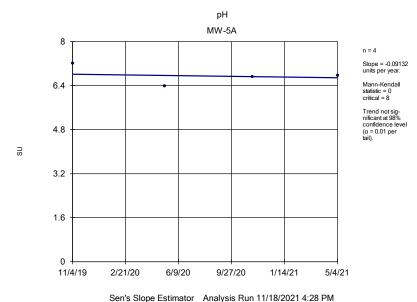
9/28/20

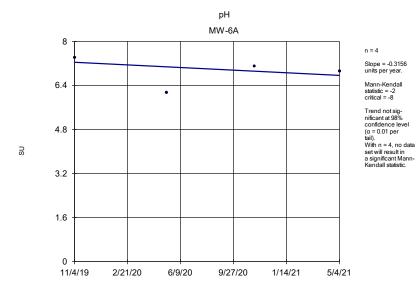
1/15/21

5/5/21

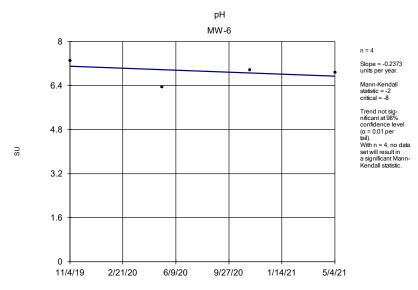

6/10/20

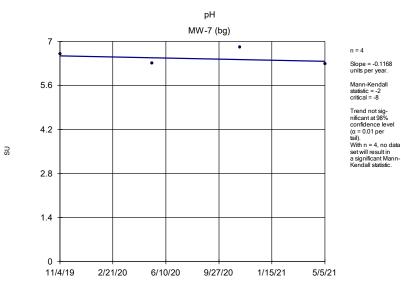
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

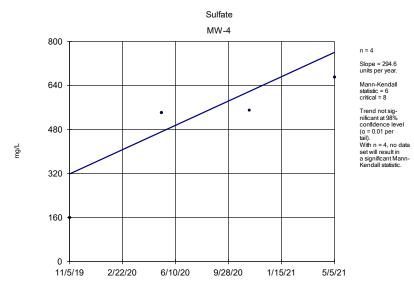

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

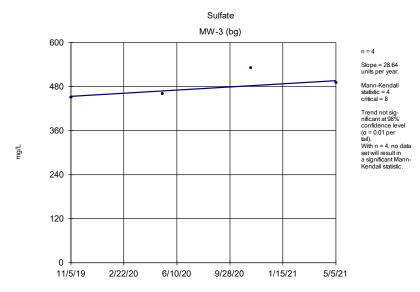
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

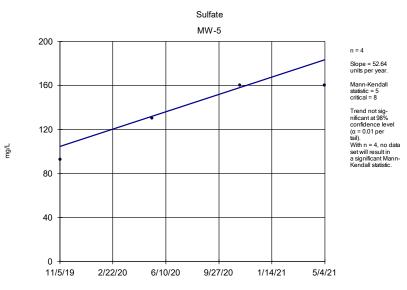
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

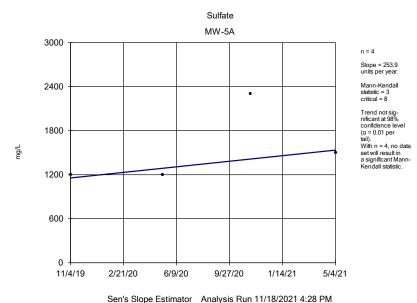

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

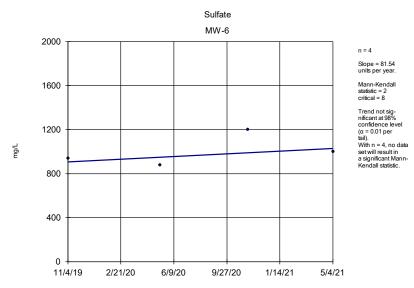
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

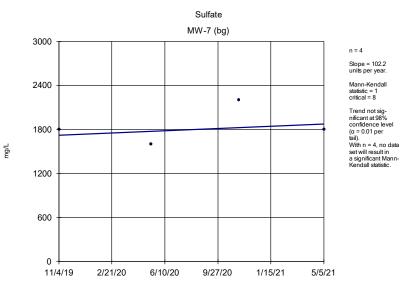

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

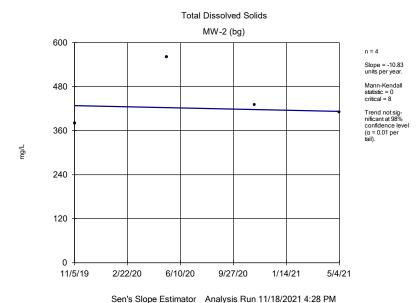
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

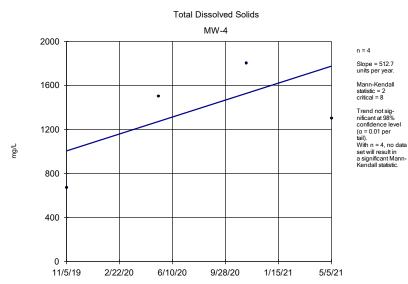

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

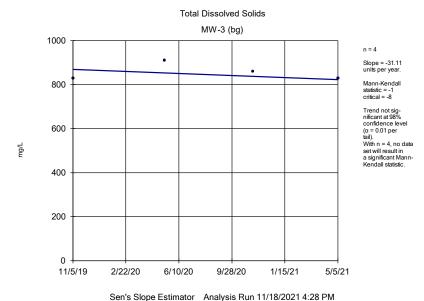
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

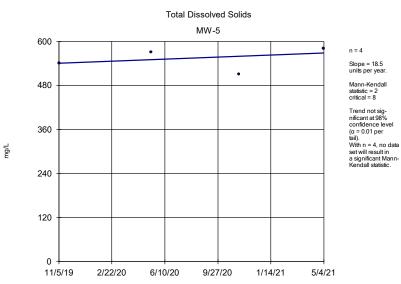

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

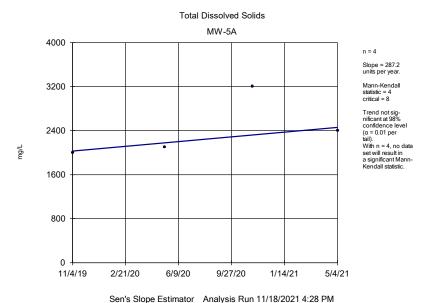
The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

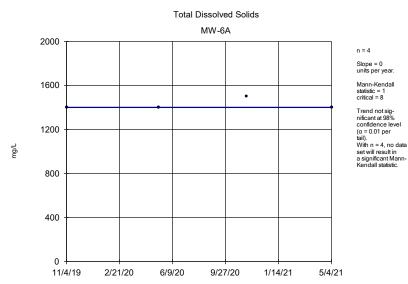


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

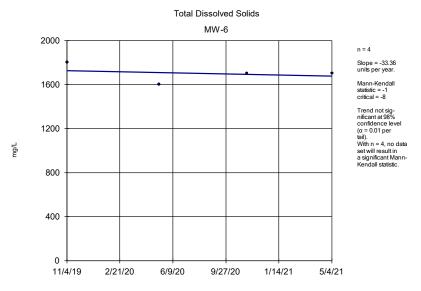


The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

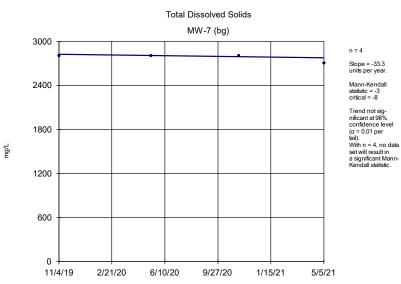


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background



The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

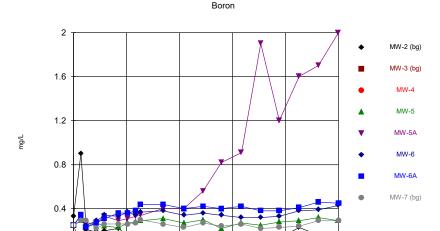
Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 11/18/2021 4:28 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background

	The Empire District Client: Mid	west Environme	ntal Consultants	Data: 11-2	1 App 3 Asl	bury ponds	with backg	ound Printed	11/18/2021, 4:2	8 PM	
Constituent	<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.00	-1	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	0	8	No	4	100	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	0.03481	4	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.2754	4	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.00	-1	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01648	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.01314	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-1.343	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	0.8426	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	-1.081	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	3.342	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	40.52	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	11.8	3	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	11.58	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	14.9	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	-11.81	-3	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	0.6502	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	8.002	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	1.608	6	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	31.62	4	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	2.377	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	8.419	6	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	-2.804	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	0.009225	0	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	0.003336	1	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.08059	-2	-8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5	0.04326	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5A	-0.03463	0	8	No	4	50	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	0.1083	4	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	0.07438	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	0	0	8	No	4	100	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.3055	-4	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	-0.1403	-4	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	-0.5684	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	-0.05777	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	-0.09132	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	-0.2373	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	-0.3156	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	-0.1168	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	-6.294	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	28.64	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-4	294.6	6	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5	52.64	5	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5A	253.9	3	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6	81.54	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	115.4	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	102.2	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	-10.83	0	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	-31.11	-1	-8	No	4	0	n/a	n/a	0.02	NP
(J. /	- (3/										


Trend Test

	The Empire District Client: Midwest Environmental Consultants Data: 11-21 App 3 Asbury ponds with background Printed 11/18/2021, 4:28 PM							:28 PM			
Constituent	<u>Well</u>	Slope	<u>Calc.</u>	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	MW-4	512.7	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5	18.5	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5A	287.2	4	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6	-33.36	-1	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6A	0	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-7 (bg)	-33.3	-3	-8	No	4	0	n/a	n/a	0.02	NP

Sanitas[™] Output – Sampling Event

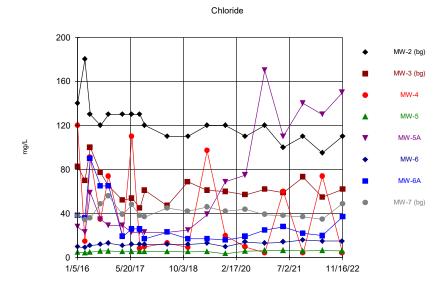
Time Series Analysis

Time Series Analysis Run 12/6/2022 4:04 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-22 App 3 Asbury ponds with background

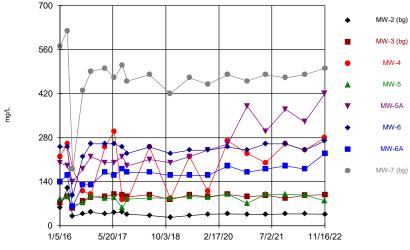
2/17/20

7/2/21


11/16/22

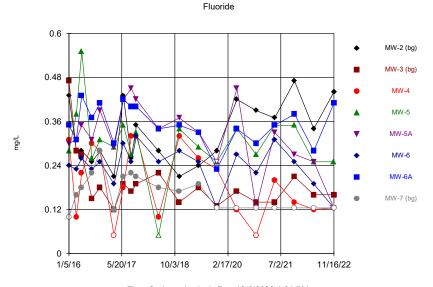
10/3/18

1/5/16


5/20/17

Time Series Analysis Run 12/6/2022 4:04 PM

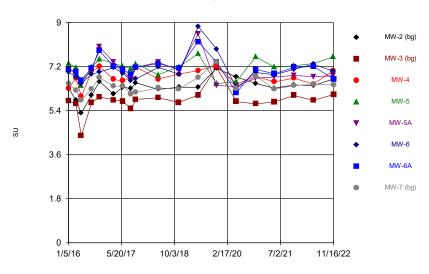
The Empire District Client: Midwest Environmental Consultants Data: 11-22 App 3 Asbury ponds with background



Calcium

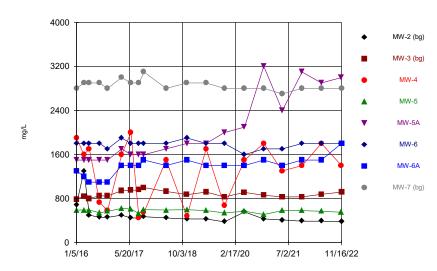
Time Series Analysis Run 12/6/2022 4:04 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-22 App 3 Asbury ponds with background


Sanitas™ v.9.6.36 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Time Series Analysis Run 12/6/2022 4:04 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-22 App 3 Asbury ponds with background

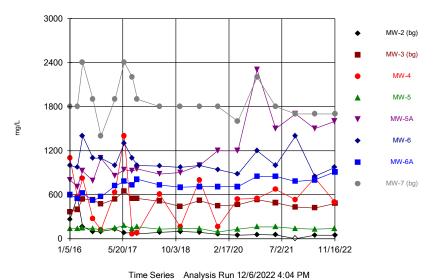

Time Series Analysis Run 12/6/2022 4:04 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-22 App 3 Asbury ponds with background

The Emphre State Containment of Containment of State 11 22 14 pp 6 7 65 day pende min State Green

${\sf Sanitas^{\sf TM}} \ v. 9.6.36 \ {\sf Sanitas} \ {\sf software} \ {\sf licensed} \ to \ {\sf Midwest} \ {\sf Environmental} \ {\sf Consultants}. \ {\sf UG}$

Total Dissolved Solids

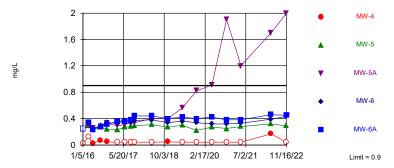


Time Series Analysis Run 12/6/2022 4:04 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-22 App 3 Asbury ponds with background

Sanitas™ v.9.6.36 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sulfate

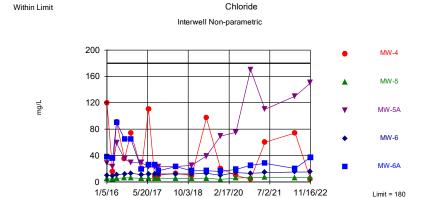


Sanitas[™] Output – Sampling Event Prediction Limits

Hollow symbols indicate censored values.

Exceeds Limit: MW-5A Boron

Interwell Non-parametric



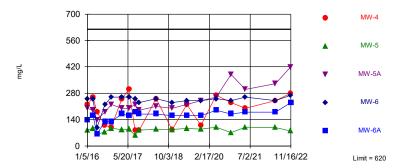
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 54 background values. 24.07% NDs. Annual perconstituent alpha = 0.006529. Individual comparison alpha = 0.0006549 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/6/2022 4:07 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-22 App 3 Asbury ponds with background

Sanitas™ v.9.6.36 Sanitas software licensed to Midwest Environmental Consultants. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 54 background values. Annual per-constituent alpha = 0.006529. Individual comparison alpha = 0.0006549 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

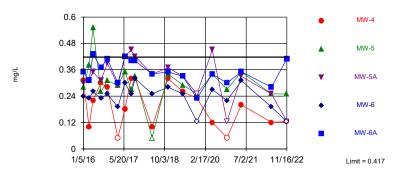

Prediction Limit Analysis Run 12/6/2022 4:07 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-22 App 3 Asbury ponds with background

Sanitas™ v.9.6.36 Sanitas software licensed to Midwest Environmental Consultants. UG

Within Limit Calcium

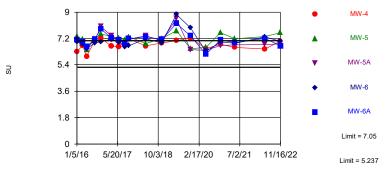
Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 54 background values. Annual per-constituent alpha = 0.006529. Individual comparison alpha = 0.006549 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/6/2022 4:07 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-22 App 3 Asbury ponds with background

Sanitas™ v.9.6.36 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values


Within Limit Fluoride
Interwell Parametric

Background Data Summary (based on square root transformation): Mean=0.4652, Std. Dev.=0.0974, n=54, 12.96% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9423, critical = 0.939. Kappa = 1.854 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Comparing 5 points to limit.

Exceeds Limits: MW-5 pH

Interwell Parametric

Background Data Summary (based on square transformation): Mean=38.57, Std. Dev.=6.008, n=54. Seasonality was not detected with 95% confidence. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9469, critical = 0.939. Kappa = 1.854 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.0007498. Individual comparison alpha = 0.000752. Comparing 5 points to limit.

Prediction Limit Analysis Run 12/6/2022 4:07 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-22 App 3 Asbury ponds with background

Total Dissolved Solids

Sanitas™ v.9.6.36 Sanitas software licensed to Midwest Environmental Consultants. UG

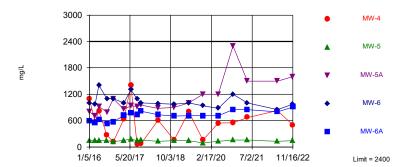
0

Within Limit

Interwell Non-parametric

4000
3200
MW-5
MW-5A
MW-6A

1/5/16 5/20/17 10/3/18 2/17/20 7/2/21 11/16/22


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 54 background values. Annual per-constituent alpha = 0.006529. Individual comparison alpha = 0.0006549 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Limit = 3100

Prediction Limit Analysis Run 12/6/2022 4:08 PM

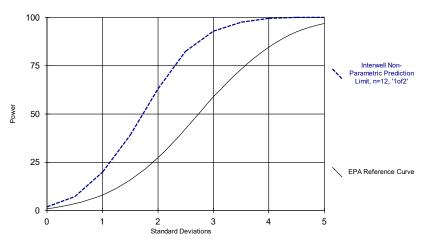
Sanitas™ v.9.6.36 Sanitas software licensed to Midwest Environmental Consultants. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 54 background values. Annual per-constituent alpha = 0.006529. Individual comparison alpha = 0.006549 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/6/2022 4:07 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-22 App 3 Asbury ponds with background

Prediction Limit


	The Empire Distric	t Client: Midwe	st Environmental C	Consultants I	Data: 11-22 App	p 3 Asb	ury pond	ds with back	ground Printed 12	/6/2022, 4:13	3 PM
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-4	0.9	n/a	11/15/2022	0.04ND	No	54	24.07	n/a	0.000	NP Inter (normality)
Boron (mg/L)	MW-5	0.9	n/a	11/15/2022	0.29	No	54	24.07	n/a	0.000	NP Inter (normality)
Boron (mg/L)	MW-5A	0.9	n/a	11/15/2022	2	Yes	54	24.07	n/a	0.000	NP Inter (normality)
Boron (mg/L)	MW-6	0.9	n/a	11/15/2022	0.43	No	54	24.07	n/a	0.000	NP Inter (normality)
Boron (mg/L)	MW-6A	0.9	n/a	11/16/2022	0.45	No	54	24.07	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	MW-4	620	n/a	11/15/2022	280	No	54	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	MW-5	620	n/a	11/15/2022	79	No	54	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	MW-5A	620	n/a	11/15/2022	420	No	54	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	MW-6	620	n/a	11/15/2022	270	No	54	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	MW-6A	620	n/a	11/16/2022	230	No	54	0	n/a	0.000	NP Inter (normality)
Chloride (mg/L)	MW-4	180	n/a	11/15/2022	4.4	No	54	0	n/a	0.000	NP Inter (normality)
Chloride (mg/L)	MW-5	180	n/a	11/15/2022	6	No	54	0	n/a	0.000	NP Inter (normality)
Chloride (mg/L)	MW-5A	180	n/a	11/15/2022	150	No	54	0	n/a	0.000	NP Inter (normality)
Chloride (mg/L)	MW-6	180	n/a	11/15/2022	15	No	54	0	n/a	0.000	NP Inter (normality)
Chloride (mg/L)	MW-6A	180	n/a	11/16/2022	37	No	54	0	n/a	0.000	NP Inter (normality)
Fluoride (mg/L)	MW-4	0.417	n/a	11/15/2022	0.125ND	No	54	12.96	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-5	0.417	n/a	11/15/2022	0.25	No	54	12.96	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-5A	0.417	n/a	11/15/2022	0.125ND	No	54	12.96	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-6	0.417	n/a	11/15/2022	0.125ND	No	54	12.96	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-6A	0.417	n/a	11/16/2022	0.41	No	54	12.96	sqrt(x)	0.001504	Param Inter 1 of 2
pH (SU)	MW-4	7.05	5.237	11/15/2022	7.03	No	54	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-5	7.05	5.237	11/15/2022	7.6	Yes	54	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-5A	7.05	5.237	11/15/2022	6.83	No	54	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-6	7.05	5.237	11/15/2022	7.01	No	54	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-6A	7.05	5.237	11/16/2022	6.69	No	54	0	x^2	0.000752	Param Inter 1 of 2
Sulfate (mg/L)	MW-4	2400	n/a	11/15/2022	500	No	54	0	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	MW-5	2400	n/a	11/15/2022	140	No	54	0	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	MW-5A	2400	n/a	11/15/2022	1600	No	54	0	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	MW-6	2400	n/a	11/15/2022	970	No	54	0	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	MW-6A	2400	n/a	11/16/2022	910	No	54	0	n/a	0.000	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-4	3100	n/a	11/15/2022	1400	No	54	0	n/a	0.000	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5	3100	n/a	11/15/2022	550	No	54	0	n/a	0.000	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5A	3100	n/a	11/15/2022	3000	No	54	0	n/a	0.000	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6	3100	n/a	11/15/2022	1800	No	54	0	n/a	0.000	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6A	3100	n/a	11/16/2022	1800	No	54	0	n/a	0.000	NP Inter (normality)

Sanitas[™] Output – Sampling Event

Power Curve

Power Curve

This report reflects annual total based on two evaluations per year.

Analysis Run 12/6/2022 4:15 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-22 App 3 Asbury ponds with background